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Abstract
Using Monte Carlo simulations and self-consistent field (SCF) theory we study
the surface and interface properties of a coarse grained off-lattice model. In
the simulations we employ the grand canonical ensemble together with a
reweighting scheme in order to measure surface and interface free energies
and discuss various methods for accurately locating the wetting transition. In
the SCF theory, we use a partial enumeration scheme to incorporate single-
chain properties on all length scales and use a weighted density functional for
the excess free energy. The results of various forms of the density functional are
compared quantitatively to the simulation results. For the theory to be accurate,
it is important to decompose the free energy functional into a repulsive and an
attractive part, with different approximations for the two parts.

Measuring the effective interface potential for our coarse grained model we
explore routes for controlling the equilibrium wetting properties. (i) Coating
of the substrate by an oxide layer gives rise to a subtle interplay between short-
range and long-range forces,which may stabilize a film of mesoscopic thickness
or result in the formation of nano-droplets. (ii) Coating the substrate with a
polymer brush, we observe second-order wetting transitions at intermediate
grafting densities, while the wetting transition is of first order at low and
high grafting densities. In the latter limit, polymers of the same chemical
structure as the brush do not wet the surface (autophobicity). (iii) Surface
pattern (stripes) might give rise to unusual adsorption properties, which are
related to morphological transitions. We relate our findings to experiments and
discuss perspectives and limitations of the computational methods.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The stability of thin polymer films has attracted abiding interest. Thin polymer films find
ubiquitous technological applications (e.g. as dielectric layers, protective coatings, adhesives
or lubricants). One key issue is the thermodynamic stability of a thin film: will the film form
a stable homogeneous layer on a substrate or will it will break up into droplets?

Consequently, much basic research has been directed towards understanding the wetting
properties of polymers [1]. Apart from the practical interest, the use of polymers to study the
thermodynamic properties of thin films has additional advantages:

(i) The vapour pressure of long polymers is vanishingly small in comparison to small
molecules. Therefore there are very little evaporation effects when a polymer film is
in contact with air.

(ii) Polymers offer much control over surface properties. Changing the length of the polymers
or grafting some polymers to the surface one can modify the wetting properties without
changing the interaction between segments. This offers ample ways to fine-tune the
wetting behaviour.

Typically the width of the interface between a polymer melt and a substrate or a melt and its
vapour is of the order of the statistical segment length and,as a consequence, details of the chain
architecture and the arrangement of the polymers on the monomer scale significantly influence
surface and interface tensions. The latter quantities, in turn, determine macroscopic properties
like the contact angle of droplets or the work of adhesion. For a quantitative prediction of such
properties, we must consider two different problems. On the one hand, we require an accurate
description of the interaction between the chemical constituents of the system; on the other
hand, we require a computational scheme that will allow for the calculation of mesoscopic
properties (e.g. orientation of the molecules, thickness of wetting layers or free energy cost of
surfaces) from knowledge of the detailed chemical description. We will address only the latter
problem.

Although considerable theoretical effort has been devoted to polymers at hard surfaces
(cf, e.g., [2]), there have been comparatively few studies on situations where attractive
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interactions play an important role. Besides their practical relevance, attractive surfaces pose
a challenge to computational methods. In the presence of attractive interactions the surface
and interfacial free energies are a result of a subtle balance between the strong but short-range
repulsions (hard core) and weaker but longer-range attractions. Both simulations and theory
have to determine the free energies with a rather high accuracy to predict wetting properties,
and this is not a trivial task.

In this review we focus on the static equilibrium properties of a one-component
homopolymer liquid at surfaces and interfaces. We use a generic coarse-grained model and
uncorrugated surfaces, which attract the fluid via long-range van der Waals interactions. We
do not aim at a chemically realistic modelling of a specific polymer, but rather focus on an
accurate description within our coarse-grained model, which we expect to provide information
about the qualitative behaviour of experimental systems.

This review is arranged as follows: in the next section we give a brief phenomenological
description of wetting, which serves to introduce the basic concepts and notation. Then, we
describe our computational model and the simulation technique. In the following section we
describe the self-consistent field (SCF) calculations. The predictions of the SCF theory for
the surface and interface properties are compared to the simulation data in order to gauge
the accuracy of the SCF calculations. Our SCF scheme is also placed in context to alternative
approaches. In section 5 we discuss various methods to locate the wetting transition in computer
simulations and compare our results to the SCF calculations. In the following sections we apply
the SCF calculations to study the wetting behaviour of layered substrates and polymer brushes.
In section 8 we employ Monte Carlo (MC) simulations in order to illustrate how the wetting
behaviour is modified by a patterned substrate. We close with a brief summary and an outlook.

2. Phenomenological description

Macroscopic droplets are described by the Young equation [3] which relates the interface
tension γLV, the surface tension of the liquid γLW and the vapour γVW to the contact angle �:

γLV cos � = γVW − γLW. (1)

An important feature of Young’s equation is that the shape of a macroscopic drop does not
depend on its size. This result follows readily from the assumption that the free energy cost of
a surface is directly proportional to its area. Such an approximation is good for drops that are
macroscopically large. If the size of the drop is of the order of the characteristic length scale of
the interfaces, however, the interactions between the substrate and the droplet’s liquid–vapour
interface, on the one hand, and the free energy cost arising from the curvature of the liquid–
vapour interface, on the other, become relevant features which must be taken into account. To
a first approximation such effects can be accounted for phenomenologically by augmenting
the free energy with a higher order term which is linear in the perimeter of the drop. The
coefficient of this contribution is known as the line tension, τ . Using the force balance at the
contact line and assuming a spherical cap for the shape of the droplet, one obtains Gretz’s
equation [4]:

γLV cos � = γVW − γLW − τ

R sin �
(2)

where R denotes the droplet’s radius of curvature.
Rather than decomposing the free energy of a droplet into surface and line contributions,

we regard the interaction g between the liquid–vapour interface and the substrate and determine
the shape of the droplet by minimizing its free energy. In the following we consider a simple free
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energy functional which is sufficient to illustrate the qualitative features [1]. More sophisticated
approaches, which are tailored to polymeric liquids, will be discussed in section 4. Moreover,
for the sake of simplicity, we will consider the role of the effective interface potential and that
related to the drop’s curvature separately. That is, let us first consider the effect of having a film
of microscopic thickness on top of the substrate, and then study the free energy cost related to
the curvature of the interface.

The effective interface potential g(l) describes the free energy it costs to place the liquid–
vapour interface of unit area a distance l away from the substrate. It is a mesoscopic description
of the liquid film on the substrate: on the one hand it abstracts from the details of the interface
profile. Rather than describing the detailed packing and enrichment effects of the liquid at
the surface and the distortion of the liquid–vapour interface by the presence of the substrate
it describes the system by a single parameter, l, the distance between the substrate and the
liquid–vapour interface. On the other hand, the interface potential still retains much more
information than just the macroscopic properties like contact angle or liquid–vapour interface
tension.

The minimum of the interface potential, gmin, describes the macroscopic wetting
properties. If a stable minimum at some finite film thickness, l0, is found, the liquid will
not wet the substrate, but will rather form droplets. The contact angle of the droplets is given
by [1]

gmin

γLV
= cos � − 1. (3)

Upon approaching the wetting transition the film thickness diverges. At a second-order
wetting transition it grows continuously, while at a first-order wetting transition it jumps
discontinuously from a finite microscopic value to a macroscopic value. In the latter case
the minimum of g(l) at finite microscopic thickness becomes metastable for a temperature
range above the wetting transition temperature. This gives rise to prewetting: the coexistence
of a thin and a thick liquid layer on the substrate at undersaturation. Upon increasing the
temperature further, we reduce the difference between the coexisting thin and thick layers.
The prewetting coexistence terminates in a prewetting critical point (CP) at Tpwc.

There are two major contributions to the interface potential [1]:

• The presence of the substrate distorts the liquid–vapour interface. This gives rise to a
short-range contribution to the interface potential. As the wings of the interface profile
decay exponentially towards the coexistence values on the liquid and vapour side, the
short-range contribution has the form

gsr

γLV
(l) = ae−l/ξ − be−2l/ξ + ce−3l/ξ + · · · + (4)

where ξ denotes the bulk correlations which sets the characteristic scale of the wings of the
interface profile. a, b and c are phenomenological, temperature-dependent coefficients.
As the free energy costs arise from the distortion of the liquid–vapour interface these
coefficients are on the order of unity. The calculation of this contribution to the interface
potential requires a detailed description of the density profile in the vicinity of the substrate,
e.g. as obtained from simulations, SCF theory or density functional calculations. In this
phenomenological section we shall illustrate the qualitative behaviour using the specific
choice:

a = (T − Twet) + 1
4 and b = c = 1. (5)

• Another contribution to the interface potential arises from the dispersion forces inside the
liquid and between the liquid and the constituents of the substrate. The Hamaker constants
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ALL, ALW > 0 parametrize the strength of long-ranged attractions between liquid particles
and the liquid and the substrate, respectively, i.e. V (r) = −ALW/π2ρlρw|r|6, where ρl

and ρw denote the number densities of liquid and substrate particles, and r denotes the
distance between the particles. Assuming that the density of the liquid at the wall equals
the density of the liquid which coexists with the vapour and approximating the liquid–
vapour profile by a sharp kink, one can calculate the energy E(l) as a function of the film
thickness l:

E(l) ≡ − ALW

π2

∫
−∞<z<0

d3r

∫
0�z′<l

d3r′ 1

(r − r′)6

− ALL

2π2

∫
0�z<l

d3r

∫
0�z′<l

d3r′ 1

(r − r′)6
. (6)

The integrations are extended over the volumes of the materials. The factor 1/2 in the
last contribution takes account of the double-counting of interaction pairs in the liquid
film. In principle, there are also contributions from the interaction within the substrate,
but these do not depend on the thickness l. Keeping only l-dependent terms one obtains
for the long-range contribution gvdW(l) ≡ E(l)/L2

gvdW(l) = 1

12π

(
− ALL − ALW

l2

)
. (7)

More generally, higher-order contributions can be included and one obtains

glr(l) = A

l2
+

B

l3
+

C

l4
+ · · · + (8)

where A, B and C are phenomenological coefficients. Logarithmic corrections may arise
in higher order terms [46].

The above expressions for the interface potential are correct whenever the system is found at
coexistence. If, on the other hand, the system is undersaturated, there appears an extra term
proportional to �µl, where �µ = µ − µcoex < 0 denotes the undersaturation of the vapour.

In practice, both short- and long-range interactions are present, but the following
qualitative discussion is independent from the range of the interactions. We therefore confine
our discussion to the potential of equation (4). Figure 1(a) shows the surface phase diagram
for this choice of model potential. It is found that, below Twet, the wetting temperature, the
vapour may only coexist with a thin film of microscopic size. However, for temperatures above
Twet, there exists a chemical potential �µ < 0, the prewetting chemical potential, at which a
thin and a thick film may coexist simultaneously with the vapour. As the chemical potential
is increased above the prewetting chemical potential, the thin film becomes unstable and the
thick film is favoured. Finally, as coexistence is approached, the film thickness diverges until
it reaches macroscopic size.

The effective interface potential describes the interaction between a flat interface and the
substrate. More generally one can describe the free energy of a liquid film with surface S by

H[S] =
∫

S
dS {γLV + κ(C − Cs)

2 + κ̄G + g(l)}. (9)

The first three contributions describe the free energy of a bent interface. The first term denotes
the free energy it takes to create an interface, and it is proportional to the liquid–vapour interface
tension. The next terms describe the free energy costs due to bending: C , Cs and G denote the
mean, spontaneous, and Gaussian curvatures, respectively. The coefficients κ and κ̄ denote
the bending rigidity and the saddle splay modulus of the interface. The last term denotes the
interaction between the interface and the substrate.
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Figure 1. (a) Wetting and prewetting. (b) Droplet boundary far below the wetting transition
temperature (T = Twet − 0.55). (c) Droplet boundary slightly below the wetting transition
temperature (T = Twet−0.01). (d) Prewetting coexistence above the wetting transition temperature
(T = Twet + 0.05). For further explanations, cf the text (from [75]).

If the interface is almost flat, one can describe the local interface position l(x, y) by
the distance of the interface as a function of the two lateral coordinates x and y (Monge
representation). Furthermore, retaining only leading contributions, one obtains [6, 7]:

H [l(x, y)] =
∫

dx dy

{
γLV

2
(∇l)2 + g(l)

}
. (10)

The shape of the interface is obtained by minimizing this interface Hamiltonian. In order to
give a simple qualitative account, we restrict ourselves in the following to those situations
where the distance between the liquid–vapour interface and the wall depends only on a single
coordinate x , while the system is uniform in the other lateral direction. Minimizing the interface
Hamiltonian (10) we find the following Euler–Lagrange equation:

γLV
d2l

dx2
= d

dl
g(l). (11)

When we identify the lateral coordinate x with time and the distance l with a particle’s position
the Euler–Lagrange equation is equivalent to Newton’s second law for a particle moving in the
potential −g(l).

In analogy to the mechanical problem, we integrate the Euler–Lagrange equation to obtain
(analogous to the conservation of energy in mechanics):

1

2
γLV

(
dl

dx

)2

− g(l) = constant. (12)
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The constant is fixed by the initial condition, i.e. thickness of the film in the limit x → −∞,
which we denote l0 = l(x → −∞). The value of l0 is, however, not arbitrary but imposed as
the minimum of g(l) at the considered chemical potential. Taking this into account, we obtain
constant = g(l0). With this boundary condition we can integrate equation (12) again, and
obtain for the profile of the film thickness (or particle’s trajectory)

x =
∫ l

l0

√
γLV dl ′√

2(g(l ′) − g(l0))
. (13)

Once the film thickness profiles are known, the line tension for the drop may be calculated
(approximately) using the following equation [6, 7]:

τ = √
2γLV

∫ ∞

l0

dl ′
{√

g(l ′) − g(l0) − √
g(∞) − g(l0)

}
. (14)

More accurate expressions for long range interactions have been obtained [8, 9].
The solution for the interface profiles at different temperatures is shown in figures 1(b)–

(d). Together with the profiles predicted from equation (13) (full curves), we show the profile
that drops would adopt if the contact angle were to be that predicted by Young’s equation
(broken curves). For each of the chosen temperatures, we also show the interface potential
at coexistence (figures 1(b), (c)) and at the prewetting chemical potential (figure 1(d)). The
shaded areas of the interface potentials represent the region where the integral of equation (14)
has significant contributions. For temperatures well below Twet, the line tension is small and
negative. Accordingly, the interface profile is almost linear and follows closely that which
would be expected from Young’s equation almost up to the rim (see figure 1(b)). As we
approach the wetting transition temperature Twet, however, the line tension changes sign and
becomes large and positive. This leads to a profile with a limiting slope far larger than that
predicted by Young’s equation (figure 1(c)). The shape of the rim of the droplet has been
calculated analytically in [8, 9]. For temperatures above Twet, the liquid wets the substrate and
a macroscopically thick liquid layer is adsorbed on the substrate in contact with a saturated
vapour. If the vapour is undersaturated, there will be a coexistence between a thin and a
thick liquid layer, the two coexisting states at the prewetting line. The shape of the interface
connecting those two states is presented in figure 1(d).

We shall test these phenomenological predictions by MC simulations and SCF calculations
for a generic polymeric model. In the next section, we introduce our computational model and
provide information about the bulk and interface properties pertinent to the wetting behaviour.

3. Model and Monte Carlo technique

3.1. Coarse-grained bead-spring model

We use a standard coarse-grained off-lattice model [10, 11] which incorporates the relevant
features of polymeric materials: excluded volume of segments, chain connectivity and an
attractive interaction between monomers. The model does not contain information about the
chemical structure on the atomistic level, and each monomer in our model should be thought
of rather as a small number of chemical repeat units.

The different interactions to which the monomeric units are subjected are illustrated in
figure 2(a). Monomeric units interact via a Lennard-Jones (LJ) potential which is cut off
at twice the minimum distance and shifted in order to produce a continuous potential. This
bead–bead interaction, VLJ(r), is given by

VLJ(r) = 4ε

{(
σ

r

)12

−
(

σ

r

)6

+
127

16 384

}
for r < rmax ≡ 2 × 21/6σ. (15)
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Figure 2. (a) Sketch of the interaction in our model system of a polymer liquid in contact with a wall.
(b) Illustration of the simulation technique for temperature kB T/ε = 1.68 and µcoex = 106.897.
A cuboidal system geometry 13.8σ × 13.8σ × 27.6σ with periodic boundary conditions in all
three directions is used. The full curve corresponds to the negative logarithm of the probability
distribution P(φ) in the grand canonical ensemble. The two minima correspond to the coexisting
phases and the arrows on the φ axis mark their densities. The height of the plateau yields an accurate
estimate for the interfacial tension γLV. The broken curve is a parabolic fit in the vicinity of the
liquid phase employed to determine the compressibility. The typical system configurations are
sketched schematically. (c) Free energy as a function of the density of a system, which is confined
between walls of attractive strength εw . The grand canonical simulations at kB T/ε = 1.68 and
coexistence chemical potential in the bulk are performed in a geometry 13.8σ ×13.8σ ×27.6σ . The
curves are shifted such that the free energy of the liquid phase vanishes. The horizontal arrow on
the left marks the value of the interfacial tension γLV, while the vertical arrow marks the difference
in the surface tension between the vapour/wall and liquid/wall for εw = 3.15. Typical system
configurations are sketched schematically (from [24]).

and VLJ vanishes for larger distances. In addition to the LJ potential, monomers along a chain
interact via a FENE potential:

VFENE(r) = −15ε

(
R0

σ

)2

ln

(
1 − r2

R2
0

)
with R0 = 1.5σ. (16)

The parameters are chosen such that the LJ potential between non-bonded segments prefers
a distance rnb ≈ 1.12σ , while the most favourable distance between bonded neighbours
rb ≈ 0.96σ is slightly smaller. The mismatch between the bonded and non-bonded length
scales suppresses long-ranged crystalline order, and the model exhibits glassy behaviour [11]
for densities comparable to or larger than the triple point density of the monomer fluid.
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Each monomer interacts with the walls via a LJ 9–3 interaction given by

Vwall(z) = εw

{(
σ

z

)9

−
(

σ

z

)3}
(17)

where z is the distance between a monomer and the wall. This potential mimics the van der
Waals interactions between the molecules of the wall and the monomers (cf equation (7)). The
parameter εw plays the role of the Hamaker constant. Increasing εw the wall attracts the liquid
and eventually the liquid will wet the wall and form a stable homogeneous film.

For computational convenience, we focus on short chains of N = 10 segments and
temperature kB T/ε = 1.68, where kB is Boltzmann’s constant and T is the temperature.
If these parameters were mapped onto a realistic polymer model this chain length would
correspond to roughly 40 chemical repeat units at a fairly elevated temperature T ≈ 0.5� ≈
3.7Tg, where kB�/ε ≈ 3.3 denotes the reduced � temperature [12] and kB Tg/ε ≈ 0.45 the
reduced glass transition temperature [11]. Under these conditions the density of the vapour
phase is negligible, but the density of the liquid (melt) is not too high and allows for an
efficient equilibration of the system. For chain length N = 10 the chains’ end-to-end distance
is Re = 3.66σ .

3.2. Monte Carlo technique

We perform MC simulations in the canonical ensemble to study the detailed profiles of a
concentrated polymer solution in contact with a wall and the liquid–vapour interface. This
technique is also employed in order to investigate the properties of microscopic droplets.
Random local displacements of the individual segments as well as slithering-snake-like motions
are used to update the polymer conformations. Typically these MC moves are applied in the
ratio 1:1. One MC cycle corresponds to 1 local displacement per monomer and 1 slithering-
snake movement per polymer. Every 100 or 5000 MC cycles a configuration is stored for
further analysis of the profiles or to analyse the droplet shape, respectively. Typically, we
averaged results over 1500 000 MC cycles for each set of parameters.

To determine the phase behaviour or measure the excess free energies of inhomogeneous
solutions we simulate in the grand canonical ensemble, i.e. rather than simulating at constant
number of particles we fix the chemical potential µ of the polymer. In addition to the updates of
the polymer conformations (as described above) we perform polymer insertions and deletions
via configurational bias [13–15]. The configurational bias scheme utilizes a biased insertion
method to ‘grow’ a polymer successively into the system. At each step a small number
(typically 25) of segment positions is examined and a position for insertion of the next monomer
along the chain is chosen according to its Boltzmann weight. This choice biases the insertion
towards non-overlapping/low-energy chain conformations. Once a chain has been grown the
bias in the construction is compensated in the MC lottery. Typically, we used systems of size
13.8σ × 13.8σ × 27.6σ in the grand canonical simulations.

The grand canonical simulation scheme does not correspond to a realistic dynamics.
However, it allows for a much faster equilibration of density fluctuations, which would decay
in the canonical ensemble via the slow diffusive motion of the polymers. For instance, the
equilibration of the thickness of wetting layers at the surface in the canonical ensemble would
require an exchange of polymers between the vapour phase and the liquid layer at the wall
via polymer diffusion. In order to act as a particle reservoir, the vapour phase would have to
be enormously large to accommodate sufficient polymers to observe the dependence of the
wetting layer on the monomer wall interaction.
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3.3. Bulk and interface properties

The key quantity to monitor in the grand canonical simulations is the probability distribution
P(φ) of the density. At phase coexistence this distribution exhibits two pronounced peaks,
which correspond to the vapour and the liquid phase. The coexistence chemical potential
µcoex(T ) is fixed by the condition of equal weight in both peaks [16, 17]:∫ φ∗

0
dφ P(φ)

!=
∫ ∞

φ∗
dφ P(φ) with φ∗ =

∫ ∞

0
dφ P(φ)φ. (18)

Using histogram extrapolation [18] we can estimate the probability distribution for parameters
close to the ones at which the simulation has been performed,and thus accurately and efficiently
locate the density of the two coexisting phases—liquid and vapour—and the coexistence value
of the chemical potential.

Below the critical temperature, the vapour and the liquid phase are separated by a large free
energy barrier, and the system would not explore both phases during a single simulation run.
In order to overcome the free energy barrier in the simulations and to encourage the system to
‘tunnel’ between the two phases we add a term kB T ln W (φ) to the original Hamiltonian [19].
Choosing the reweighting function W (φ) ≈ P(φ) the system samples all densities with roughly
the same probability. A good estimate of the reweighting function is provided by histogram
analysis [18] of the results at higher temperatures, though other extrapolation schemes can be
envisaged [20, 21].

For systems with periodic boundary conditions in all three directions the typical
configurations at intermediate average densities consist of a slab of liquid which is separated
by two interfaces of area L × L from the vapour. The probability of these configurations is
suppressed due to the free energy costs of the two interfaces [22]. An example for the free
energy F(φ) = −kB T ln P(φ) is presented in figure 2(a). The plateau in the free energy
(between the minima) indicates that the two interfaces change their mutual distance (and
thereby alter the average density) without free energy cost. Therefore they do not interact
and the excess free energy is indeed the sum of the individual interface contributions 2γLV L2.
Obviously, an elongated system geometry is advantageous in order to reduce the interaction
between the two interfaces. As may be seen, with this methodology a single simulation yields
the coexistence value of the chemical potential, the coexistence densities of the liquid and the
vapour and the interfacial tension.

While the grand canonical simulations yield already an accurate estimate for the interface
tension, we perform simulations in the canonical ensemble at T = 1.68 using a 18σ×18σ×36σ

geometry with periodic boundary conditions in all directions to investigate the local structure
at the interface or surface in more detail. Choosing an appropriate number of particles, we can
stabilize two liquid–vapour interfaces a distance 18σ ≈ 5Re apart.

In principle, one can also measure the interface free energy by monitoring the anisotropy
of the pressure tensor across the interface [23]. Close to liquid–vapourcoexistence the pressure
is very small, but in our model this small value stems from a cancellation of a large positive
contribution due to the LJ interactions and a large negative contribution due to the bonding
interactions. Accurate measurement of the interface or surface tension via the pressure tensor
would require extremely good statistics [24]. For our parameters the error from the analysis
of the anisotropy of the pressure tensor is at least one order of magnitude larger than from the
reweighting method discussed above (using a comparable computational effort). As the error
results from a cancellation of rather noisy data it might not be proportional to the value of the
tension (but rather to the value of the virial of the LJ or FENE forces), and the method might
become more useful when the tension is larger [23].
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In the MC simulations the local interface position fluctuates [25–27]. These capillary
waves broaden the apparent profiles in the simulations and experiments, and the measured
profiles depend on the lateral length scale on which they are observed. This effect makes
a quantitative comparison of interface profiles between the MC simulations and the SCF
calculations rather delicate [26, 27]. Analysing the spectrum of the interface fluctuations,
however, provides an accurate alternative for measuring the interface tension. Interface
fluctuations increase the interface area and for large wavelength they are describable by
the capillary wave Hamiltonian [28]. Let u(x, y) be the local interface position; then the
Hamiltonian for the deviations of the local position is given by

H =
∫

dx dy

{
γLV

2
(∇‖u)2 +

κLV

2
(�‖u)2 + · · ·

}
(19)

(cf also equation (10)). In our simulations, we define a local y averaged interfacial position
u(x) by minimizing [25, 29]∣∣∣∣

∫ x+0.25σ

x−0.25σ

dx ′
∫ D

0
dy ′

∫ u(x)+3.6σ

u(x)−3.6σ

dz′
(

φ(x ′, y ′, z′) − φL
coex

2

)∣∣∣∣. (20)

This coarse-grained quantity describes the shape fluctuations of the interface and is rather
insensitive to local bulk-like density fluctuations. The interface position is Fourier decomposed
according to

u(x) ∼ a0

2
+

∑
k

[a(qk) cos(qk x) + b(qk) sin(qk x)] (21)

with wavevectors qk = 2πk/L. With this coarse-grained u(x) in the capillary wave
Hamiltonian, the equipartition theorem yields for the Fourier components a(q) and b(q)

γLV(q) = 2kB T

L2q2〈a2(q)〉 = 2kB T

L2q2〈b2(q)〉 ≡ γLV + κLVq2 + · · · . (22)

In principle, the value of the interfacial tension so determined also depends on the wavevector
q and we obtain the macroscopic interfacial tension γLV = γLV(q → 0) in the limit of small
wavevectors. The results of the MC simulations are presented in figure 3(a). Indeed, the MC
data agree with the value of the interfacial tension determined with the reweighting method
in the limit q → 0. However, we find a pronounced reduction of the effective interfacial
tension at larger q vectors, which corresponds to a negative bending rigidity κLV < 0 of the
interface. A similar analysis of another coarse-grained polymer model has corroborated our
finding [30, 31]. Similar deviations have been predicted by Mecke and Dietrich [33] and by
Romero-Rochin and Percus [34] in density functional calculations for a LJ monomer fluid. The
dependence of the tension on the wavevector q has also been observed experimentally [32].
Both density functional calculations [33] and experiments [32] observe an increase of γLV(q)

for large wavevectors.
Capillary waves are also detectable in the total scattering function for wavevectors q

parallel to the interface [35]. For a system with two independent interfaces the increase
�G = G − Gbulk of the scattering due to capillary waves takes the form

�G(q‖) ≡ 1

nN

〈∣∣∣∣
∫

d3r φ̂(r) exp(iqr)

∣∣∣∣
2〉

≈ �φ

nN

〈∣∣∣∣
∫

d2r‖ [u1(r‖) − u2(r‖)] exp(iq‖r‖)
∣∣∣∣
2〉

= 2
�φ2 L2

nN

kB T

γLVq2
(23)
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Figure 3. (a) Fluctuation spectrum of the local interface position. The arrow marks the value of
the interfacial tension obtained from the reweighting method. (b) Global scattering intensity from
a system containing two interfaces and the bulk system. The straight line corresponds to capillary
waves with the value of the interfacial tension γLV = 0.0953 as measured independently in the
simulations (from [24]).

where we have neglected the finite width of the interface. u1 and u2 denote the local interfacial
positions of the two interfaces and �φ = φL

coex − φV
coex is the density difference of the liquid

and the vapour [36]. The MC results for the scattering of a system with two interfaces are
presented in figure 3(b). The total scattering of the bulk is also shown. For small wavevectors
the MC data are well described by the expression above; for finite wavevectors, however, there
are deviations. In contrast to the analysis of the interface position, the excess scattering from
the interface �G(q‖) suggests that fluctuations are suppressed at smaller length scales. We
do not expect that interactions among the two interfaces in our system are the major source
for the deviations, because these interactions would chiefly modify the fluctuations for small
wavevectors. Moreover, identical configurations have been used to analyse the fluctuation
of the coarse-grained interface position and the measurement of the scattering. We rather
speculate that the decomposition of fluctuations into bulk and interface contributions might be
an oversimplification. The interface has a finite (intrinsic) width and we expect the ‘bulk-like’
scattering from the interface region (i.e. scattering of a perfectly planar interface) to differ from
the scattering of the coexisting bulk phases.

3.3.1. Surface properties. To study profiles of the density and conformational properties at
the wall, we use simulations in the canonical ensemble. Except for the vicinity of the drying
transition at εw ≈ 0, the density rises within a very short distance from the wall to liquid-like
values. The presence of an attractive wall strongly suppresses lateral fluctuations of the profile,
and the results of the MC simulations can be straightforwardly compared to the results of the
SCF calculation.

To measure surface free energies we apply the same grand canonical MC technique in
the presence of two walls [24, 37]. The simulations sample all densities between the vapour
phase (V) and the liquid phase (L) in contact with the walls. Again the logarithm of the
probability distribution yields the free energy as a function of the density. Figure 2(b) displays
the results for T = 1.68 at the bulk coexistence value of the chemical potential. The free
energy has two minima, corresponding to configurations where either a vapour (low density)
or a liquid (high density) phase is in contact with the wall. The ratio of the probability for
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finding the system in one of these phases yields the difference in the surface free energies
2L2(γVW − γLW) = kB T ln[P(φL)/P(φV )].

At intermediate densities the typical conformations consist of a liquid slab at each wall.
If the system size is large the distance between the liquid–vapour interfaces and the wall and
their mutual distance becomes large. In this limit the interfaces neither interact with the walls
nor with each other and we expect only a weak dependence of the free energy on the density.
Under these conditions one could try to extract an effective interface potential g(l) for the
position of the film away from the wall. The liquid would wet the surface if the plateau value
at intermediate densities is lower than the minimum at low densities. However, for the system
size studied we do not observe a plateau, i.e. once the interfaces have reached a distance from
the wall which is large enough for the effective interaction between the interface and the wall
to decay they already begin to interact mutually. Although our simulation cell is not large
enough to extract the effective interface potential accurately (because of the presence of two
liquid–vapour interfaces in the simulation box) we can reliably determine γVW − γLW. In
these limiting states the container is either completely filled with the liquid or the vapour and
there are no liquid–vapour interfaces present. The perturbation of the density profile in the
liquid extends only over a few σ (cf figure 6), which is much smaller than the extension of the
simulation cell.

Once this free energy difference is calculated for a particular strength of the monomer–
wall interaction εw , the dependence on the attractive strength of the wall can be obtained via
thermodynamic integration:

�(εw,µ) = �(ε0, µ) +
∫ εw

ε0

dε ′
w

〈Ewall(ε
′
w)〉

ε ′
w

(24)

where � is the grand canonical potential and Ewall = L2
∫

dz φ̂(z)Vwall(z) denotes the
interaction energy associated with the monomer–wall interaction potential. However, rather
than measuring this wall energy for many different values of the interaction strength εw ,
we use an expanded ensemble in which the monomer–wall interaction strength εw is a MC
variable [24, 37]. This allows us to calculate the free energy difference between different
values of the attractive strength εw in a single simulation run. The partition function of the
expanded ensemble takes the form

Z ∼
∑
{εw}

W−1
w (εw) exp(−�(εw)/kB T ) (25)

where the reweighting factors Ww are adjusted so as to achieve uniform sampling of the different
εw values. Initial estimates for the reweighting factor have been obtained via equation (24).
The MC simulation comprises additionally moves which switch between neighbouring values
of the monomer–wall interactions (care has to be exerted at the limiting values to fulfil detailed
balance). Let Pw(εw) denote the probability with which the fluctuating wall strength takes the
value εw . Then the difference in the surface free energy of the liquid phase is given by

γLW(εw) = γLW(ε0) − kB T

2L2
ln

(
Pw(εw)Ww(εw)

Pw(ε0)Ww(ε0)

)
(26)

where the simulations are performed at the coexistence value of the chemical potential and
the system is in the liquid phase. If the system is in the vapour phase the expression yields
the surface free energy difference of the vapour. This is a computationally efficient method
for calculating the dependence of the surface free energy on the attractive strength of the
interactions if neither the liquid nor the vapour wets the surface completely. For large
attraction εw the liquid wets the surface and the simulation in the vapour phase becomes
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metastable (the simulation cell eventually fills with the liquid phase). In the case of a first-
order wetting transition, however, the metastable states are well observable in the simulations
up to the wetting spinodal. For very small interaction strength the vapour ‘wets’ the wall
and the simulation in the liquid phase becomes metastable. At this drying transition the
difference γVW − γLW equals −γLV. The knowledge of the absolute value of γVW − γLW at the
drying transition can actually be used as an alternative starting value for the thermodynamic
integration [38, 39], because the transition shows little metastability (cf section 5).

4. Self-consistent field calculations

4.1. General formalism

In the mean field approximation the problem of many mutually interacting chains in contact
with a surface is approximated by that of a single chain in a self-consistently determined field
that mimics the effect of interactions with neighbouring molecules. This single-chain problem
is then solved using a partial enumeration scheme or resorting to a Gaussian chain model.
In this review we use the notation of SCF theories [24, 40] although a completely equivalent
description can be obtained using the density functional theory formalism [41–44].

The starting point is the canonical partition function Z of n polymers in a volume V :

Z ∼ 1

n!

∫
D[{R}]P[{R}] exp

(
− Fex[φ̂(r)]

kB T

)
(27)

where n is the number of polymer molecules, Ri, j denotes the coordinate of the j th monomer
of chain i , {R} is the set of all polymer coordinates and specifies a configuration of polymers,
D[{R}] denotes a sum over all polymer conformations, P[{R}] denotes the probability
distribution of chain conformations, Fex is the excess free energy functional and φ̂ denotes
the microscopic monomer density generated by the specific polymer configurations, i.e.

φ̂(r; {R}) =
n∑

i=1

N∑
j=1

δ(r − Ri, j), (28)

where the second sum runs over all N monomers of a chain. P[{R}] is given by

P[{R}] = Pmelt[{R}] exp

(
−

∫
d3r

Vwall(r)φ̂(r)

kB T

)
, (29)

where Pmelt[{R}] is the probability distribution of chain conformations in the melt (cf below)
and Vwall(r) is the interaction potential between a site and the surface(s). To proceed further,
we require an approximation for Fex, and some further simplifications as discussed below.

The first simplification we make is to neglect the coupling between the chain conformations
and the thermodynamic state of the system3. By construction our calculations reproduce the
chain conformations characteristic of the concentrated solution which coexists with the vapour
phase at temperature kB T/ε = 1.68. This is a quite drastic assumption, because the polymer
conformations change from a collapsed globule at low polymer concentration to a random
walk in the concentrated solution [48]. However, the free energy (of the isolated globule and
the liquid) below the � temperature is chiefly determined by the balance between attractive
and repulsive contributions to the monomer–monomer interaction; the conformational entropy
appears not to dominate the behaviour. We emphasise, however, that the change of the chain

3 For spatially homogeneous systems (bulk) the coupling of the chain conformation and temperature, density or
composition in blend has been explored in [45–47].
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conformations due to a spatial inhomogeneity (wall or liquid–vapour interface) is captured by
our calculations (cf figure 3, for instance).

The derivation of a mean field approximation to the partition function equation (27) follows
the development of SCF theories of polymers [49–53]. Introducing auxiliary fields U and �

we rewrite the multi-chain partition function in terms of non-interacting chains:

Z ∼
∫

DUD� exp

(
−n ln n + n − Fex[�]

kB T
+

∫
d3r U(r)�(r) + n ln QV

)

≡
∫

DUD� exp

(
−F[U,�]

kB T

)
(30)

where V is the volume, Q[U ] is the single-chain partition function in the external field U , i.e.

Q[U ] = 1

V

∫
D[R1]P[R1] exp

(
−

∫
d3r U(r)φ̂(r; R1)

)

= 1

V

∫
D[R1]P[R1] exp

(
−

N∑
j=1

U(R1, j)

)
, (31)

and
F[U,�]

V kB T
= φav

N
ln

φav

eN
+

Fex[�]

V kB T
− 1

V

∫
d3r U(r)�(r) − φav

N
ln Q[U ], (32)

where φav = nN
V is the average monomer density.

The functional integral equation (30) cannot be evaluated explicitly and we resort to a
saddle point approximation. If fluctuations of the local density are neglected, the values of
the field U and the density � (denoted by lower case letters) which minimize the free energy
functional F are given by

u(r) ≡ Umin(r) = D
D�

Fex[�(r)]

kB T
(33)

and

φ(r) ≡ �min(r) = −φavV

N

D
DU

ln Q[U ]

= φavV

N

∫
D[R1]P[R1]φ̂(r,R1) exp

(− ∫
d3r′ u(r′)φ̂(r′; R1)

)
∫
D[R1]P[R1] exp

(− ∫
d3r′ u(r′)φ̂1(r′; R1)

) . (34)

The last expression identifies φ(r) as the Boltzmann average of the single-chain density in the
external field u(r); it is also the theoretical estimate for the monomer density profile of the
polymer fluid. Given an approximation for Fex as a function of the density φ(r), equations (33)
and (34) form a closed set of self-consistent equations for the fields φ(r) and u(r) from which
the density profiles and thermodynamic properties can be obtained. This requires the iterative
evaluation of the average in equation (34).

Once the density profile φ(r) and the effective field u(r) which solves the self-consistent
equations have been obtained, the free energy is calculated by substituting the solutions in
equation (32). All single-chain properties (e.g. segment profiles, orientation) are computed
from the Boltzmann average of non-interacting chains in the external field u.

The numerical procedure is straightforward if computationally intensive. An initial guess
for the field u(r) is first obtained, the monomer density profile is calculated from equation (34)
and this procedure is continued until equation (38) is fulfilled. The computationally intensive
part is the evaluation of the monomer density profile. The sum (

∫
D[R1]P[R1]) over the

single-chain conformations is approximated by a partial enumeration over a large number of
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chain conformations [24, 37, 46, 54, 55] extracted from simulations of a homogeneous system
at kB T/ε = 1.68 and coexistence liquid density (φσ 3 = 0.61). Typically 106–107 single-
chain conformations are employed for the calculations, and the enumerations are performed
in parallel on a CRAY T3E assigning a small fraction of the conformations to each processor.
64 or 128 processors have been employed in parallel and a typical self-consistent calculation
of a profile takes a few minutes. The spatial dependence of the field and density profile in
equations (31), (34) and (40) is discretized in terms of the real space coordinate perpendicular
to the interface/surface. D denotes the extension of the system in the z direction perpendicular
to the inhomogeneity. Typically, we employ a discretization step of �z ≈ 0.04σ . The
corresponding set of non-linear equations is solved via a Newton–Raphson scheme.

We use a weighted density approximation (WDA) for the excess free energy functional.
Previous density functional calculations [39] and integral equations [56, 57] for LJ monomeric
fluids close to attractive walls demonstrated that the interface properties may be described in
terms of two different interactions. On the one hand, the harsh repulsive interactions, whose
range is set by the effective hard core diameter of the monomers, determine the packing of the
monomeric units. On the other hand, the attractions, whose range is set by the range of the
attractive LJ potential, i.e. rmax = 2×21/6σ , do not modify the packing to a large degree but may
considerably affect the value of the free energy. Since the effects of attraction and repulsion
are qualitatively different, an explicit decomposition of the functional into contributions from
a harsh repulsion and a weak attraction has proven successful.

We use the same decomposition of the excess free energy functional for our polymer
model:

Fex[φ(r)]

kB T
=

∫
d3r φ(r)

{
ghc(φ̄hc(r)) + gatt(φ̄att(r))

}
(35)

where ghc and gatt represent the free energies per monomer due to the repulsive interaction and
the attractive interaction, respectively, and φ̄hc(r) and φ̄att(r) are weighted densities, defined
by

φ̄hc(r) =
∫

d3r′ whc(r − r′)φ(r′)

φ̄att(r) =
∫

d3r′ watt(r − r′)φ(r′)
(36)

and whc(r) and watt(r) are (as yet undetermined) weighting functions that satisfy the
normalization condition:∫

d3r whc(r) =
∫

d3r watt(r) = 1. (37)

Phenomenologically, the weighting functions whc and watt parametrize the spatial extent of the
monomer–monomer interactions. The theory is specified by the two thermodynamic functions
of state ghc and gatt, and the two weighting functions whc(r) and watt(r). Approximations for
these four functions are discussed in the next subsection.

Note that, within the WDA, we can obtain a closed form expression for u(r):

u(r) = ghc(φ̄hc(r)) +
∫

d3r′ whc(r − r′)φ(r′)
dghc

dφ̄hc
(r′)

+ gatt(φ̄att(r)) +
∫

d3r′ watt(r − r′)φ(r′)
dgatt

dφ̄att
(r′). (38)

Since we consider only one-dimensional profiles we replace integrals of the form∫
d3r w(r)φ(r) by

∫
dz wz(z)φ(z) with

wz(z) = 2π

∫ ∞

0
dρ ρw

(√
z2 + ρ2

)
. (39)
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To obtain the free energy F we substitute the saddle point values of the field w and the
density φ into equation (32), with F = F[φ, u], which gives

F

V kB T
= φav

N
ln

φav

N
− φav

N
ln Q[u] − 1

V

∫
d3r d3r′ whc(r − r′)

dghc

dφ̄hc
φ(r)φ(r′)

− 1

V

∫
d3r d3r′ watt(r − r′)

dgatt

dφ̄att
φ(r)φ(r′). (40)

The chemical potential, µ, takes the form

µ

kB T
≡ 1

kB T

DF[φ, u[φ]]

Dφ(r)
= 1

N
ln

φav

N
− 1

N
ln Q[u[φ]], (41)

and the grand canonical ensemble free energy, �, is given by

�

V kB T
≡ F

V kB T
− µφav

kB T
= −φav

N
+

Fex[φ]

V kB T
− 1

V

∫
d3r u(r)φ(r). (42)

4.2. Choice of the free energy densities and weighting functions

4.2.1. Thermodynamic properties of the homogeneous system. As input into the theory,
we require the thermodynamic properties of the homogeneous fluid. Since we divide the
free energy functional into contributions from the repulsive and attractive parts, we require
estimates for the two free energy densities, ghc(φ) and gatt(φ). The total free energy density
of the homogeneous fluid is g(φ) ≡ ghc(φ) + gatt(φ). First we consider the total free energy
density g and subsequently the free energy density due to repulsive interactions. The attractive
contribution to the free energy density is obtained from gatt = gTPT1 − ghc.

We use Wertheim’s thermodynamic perturbation theory (TPT1) [58–63] to calculate the
total free energy density g(φ). We briefly summarize the salient features; details regarding the
implementation of the TPT1 theory to this model are given in [12]. Using the monomer fluid of
LJ particles as a reference system, we determine the total free energy of the polymer solution
by calculating the effect of the bonding potential VFENE as a thermodynamic perturbation. The
free energy difference between the polymer solution and the monomeric reference system (LJ)
is given by

F − FLJ

kB T
= − ln

1
(n)!

∫
D[r] exp

(− ELJ[r]+EFENE[r]
kB T

)
1

(nN)!

∫
D[r] exp

(− ELJ[r]
kB T

)
= − ln

(nN)!

n!
− ln

〈
exp

(
− EFENE[r]

kB T

)〉
LJ

(43)

where ELJ[r] denotes the sum over all LJ interactions and EFENE[r] represents the sum over
the n(N − 1) bonding potentials. To first order the last term can be approximated in the form
(TPT1) [58–62]:〈
exp

(
− EFENE[r]

kB T

)〉
LJ

≈
[

1

V

∫
d3r12 gLJ(r12) exp

(
− VFENE(r12)

kB T

)]n(N−1)

≡
[

δ

V

]n(N−1)

(44)

where gLJ(r12) denotes the pair correlation function of the LJ monomeric reference fluid. This
approximation yields the following relation between the free energy density of the LJ monomer
fluid and the polymer solution:

F

V kB T
= φ

N
ln

φ

N
+

FLJ

V kB T
− φ ln φ − φ

(
1 − 1

N

)
ln δ ≡ φ

N
ln

φ

N
+ φg(φ). (45)
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Figure 4. (a) Pressure p as a function of monomer density φ for chains of N = 10 monomers.
All quantities are measured in LJ reduced units. Symbols are NVT simulation data while lines are
predictions from the TPT1 using the RHNC closure for the monomeric reference fluid. From top
to bottom, pressure isotherms at kB T/ε = 5, 4, 3, 2.5 and 1.68 (from [12]). (b) Phase diagram
of the LJ model for chain length N = 10. The full curve corresponds to MC results and shows
Ising behaviour at the CP. The prediction of TPT1 [12] is shown as a long-broken curve. The
critical temperature is higher and the binodals are parabolic in the vicinity of the CP. At lower
temperature both calculations agree quantitatively. The dotted curve (YP) corresponds to the van
der Waals approximation. Diamonds mark the density in the simulation at which the pressure
vanishes. The broken horizontal line marks the temperature kB T/ε = 1.68 at which we compare
numerical theories to MC simulations. The right panel shows the temperature dependence of the
hard core diameter (from [70]).

In principle, we could determine the pair correlation function in a separate MC simulation of
the monomer fluid. However, the SCF calculations require the knowledge of the gLJ for many
different densities and temperatures. Moreover, the bonded distance is smaller than the typical
distance between LJ particles such that we would have to generate very accurate data for gLJ at
small interparticle distances for the evaluation of the above integral. We rather determined the
structure and the thermodynamics of the reference system from an integral equation approach.
Two closures to the Ornstein–Zernike equations of the reference system have been considered:
the mean spherical approximation (MSA) and the reference hypernetted chain (RHNC). Both
closures were found to give similar results [12].

The applicability of TPT1 is mainly limited by two conditions:

(a) Being a mean field theory, TPT1 does not properly account for density fluctuations and
overestimates the critical temperature of the polymer fluid.

(b) The perturbative treatment of the effect of the bonding potential is poor if the structure of
the LJ reference fluid differs strongly from the structure of the polymer solution.

In the concentrated regime the fluid structure is determined by the density and is only weakly
perturbed by the bonding potential. Hence, TPT1 gives a good description of the melt. Close
to the CP of the reference fluid (Tc(N = 1) ≈ 1) and at low densities the structure of the
monomer and polymer fluids differs more strongly, so that the agreement is less satisfactory.
Additionally, TPT1 neither predicts the density dependence of the polymer structure nor does
it properly distinguish between inter- and intramolecular interactions.

In spite of these caveats, TPT1 yields for our model a good description of the binodals
(not too close to the CP) and the equation of state without any adjustable parameter. Most
important, it provides the free energy also for the unstable homogeneous state inside the
miscibility gap without any ad hoc extrapolation procedure. The results of TPT1 for the
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equation of state (a) and the phase diagram (b) are compared to MC results for chain length
N = 10 in figure 4. Good quantitative agreement between TPT1 and MC is achieved without
any adjustable parameter. Also the scaling of the CP parameters with chain length has been
investigated [12]. TPT1 agrees with the scaling predictions of the Flory–Huggins model in
the long chain length limit [64] and captures qualitatively some of the deviations observed in
simulations of short chains. Moreover this approach can be generalized to mixtures [65].

The same TPT1 scheme can also be used to obtain the free energy of the repulsive
interaction ghc(φ), which we approximate by those of a system of tangent hard-sphere chains
of diameter dhc. We obtain the hard core diameter dhc using the Barker–Henderson [66] recipe,
i.e.

dhc =
∫ rmin

0
dr [1 − exp(−VWCA/kB T )] (46)

where the integration is extended to the minimum rmin = 21/6σ of the LJ potential and
VWCA(r) = VLJ(r) + VLJ(rmin) for r < rmin. For the hard core contribution, we use the
TPT1 due to Wertheim [58] which is known to be quantitatively accurate for the volumetric
properties of hard chain fluids [58, 60].

For tangent hard chains equation (45) simplifies to

ghc(φ) = Fhs
ex

kB T nN
−

(
1 − 1

N

)
ln δhs (47)

where Fhs
ex /nN is the excess free energy per particle of a reference fluid of unconnected hard

spheres and δhs is the contact value of the pair correlation function of the reference fluid.
The contact value δhs can be obtained from the hard sphere pressure using the virial theorem,
i.e. δhs = πd3

hc/(24φ)[p/(kBTφ) − 1]. Using the Carnaham–Starling equation of state [67]
for hard spheres we obtain [58]

ghc(φ) = 4η − 3η2

(1 − η)2
−

(
1 − 1

N

)
ln

1 − η/2

(1 − η)3
(48)

where η = πd3
hc

6 φ.
The different contributions to the free energy density are presented in figure 5(a). Over the

pertinent range of densities, the attractive contribution resembles a linear function of density.
This behaviour is expected from a van der Waals theory and shows that the decomposition
into repulsive and attractive contributions does not lead to any artefacts. In our numerical
calculations we expand the free energy per particle in a fifth-order polynomial in the density.

4.2.2. Choice of weighting functions. The other ingredient in the theory is the choice of
weighting functions. In previous work on hard chains [68] and LJ chains [24], it has been
shown that the theoretical predictions are rather insensitive to the choice of weighting functions.
This suggests that some very simple choices for the weighting functions might be adequate.
Some guidance in the choice of weighting functions can be obtained from the relation between
the second functional derivative of Fex with respect to φ(r) and the direct correlation function:(

δ2 Fex

δφ(r)δφ(r′)

)
φ(r)=φ(r′)=φ

= −kB T c(|r − r′|) (49)

where c(|r − r′|) is the direct correlation function of the homogeneous fluid.
Our first choice, which we will refer to as approximation (1), is to separate the direct

correlation function into two contributions, i.e. c(r) = c0(r) + catt(r), where the first term
is due to repulsive interactions and the second is due to attractions. In the low density limit
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Figure 5. (a) Free energy densities as a function of the monomer number density φ at temperature
kB T/ε = 1.68. TPT1 corresponds to Wertheim’s perturbation theory for the LJ chains. The
results for hard tangent chains are shown as a curve with filled squares. The attractive part of
the free energy density is depicted as a broken curve with diamonds. The TPT1 curve (circles) is
equal to the attractive part (diamonds) plus the hard chain contribution (filled squares). The full
curve with negative slope shows the free energy density of the attraction within the van der Waals
approximation (YP). The broken curve with open squares corresponds to the attractive free energy
which has been adjusted to give the correct liquid coexistence density (YP∗). The straight full line
with positive slope corresponds to the PRISM equation of state used in the calculations (CMS).
(b) Unnormalized weighting functions and comparison to the direct correlation function of the full
system c(r) and the tangent hard chain system c0(r) as obtained from PRISM theory (from [70]).

w(r) ∼ c(r) and we can identify whc(r) ∼ c0(r) and watt(r) ∼ catt(r) [70]. The polymer
reference interaction site model (PRISM) [69] theory is used to calculate the direct correlation
functions [70]. The theory requires, as input, the single-chain structure factor for the chain
fluid, which one obtains using the semi-flexible chain model with the semi-flexibility adjusted
so that the chain size is the same as in the simulations. The PRISM equations are solved with
the Percus–Yevick closure [70]. The full interaction is employed to calculate c(r) and only
the repulsive interaction potential to calculate c0(r).

A much simpler ansatz is to ignore the fluid–fluid correlations altogether and assume the
weighting function merely has the same range as the interaction potential. Our second choice,
which we refer to as approximation (2), considers the following approximation:

watt(r) ∼
{

VLJ(rmin) for r < rmin ≡ 21/6σ

VLJ(r) for rmin < r
(50)

whc(r) ∼ (1 − |r|/dhc)�(dhc − |r|) (51)

where � is the Heavyside step function, and the weighting functions are normalized as
before. The simple form reproduces the qualitative features of the PRISM results for the
direct correlation function.

Figure 5(b) depicts the weighting function from these two approximations. In both
approximations, whc(r) is a roughly linear function of r for distances less than the hard core
diameter and almost zero for larger distances. On the other hand, watt(r) is roughly constant
for distances less than the hard core diameter and proportional to the interaction potential for
larger distances. These results are quite similar to what is seen in density functional theories
of simple liquids. Interestingly, the simple ansatz is qualitatively similar to what is obtained
from the PRISM direct correlation functions.
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Figure 6. (a) Monomer number density profile at an attractive wall εw = 3 at temperature
kB T/ε = 1.68. Monomer number density profile as a function of the attraction εw between
the monomers and the wall. (b) εw = 4 and 2, (c) εw = 3 and 1. Thick curves with circles
correspond to MC results, broken curves with diamonds show the results of weighting functions
(1), broken curves present the results obtained with weighting functions (2) and dotted curves with
squares denote the result of the adjusted van der Waals approximation (YP∗). From [70].

Table 1. Free energy densities per particles and weighting functions for the different theories.

gatt watt ghc whc

(1) gTPT1 − ghc ∼c − c0 ghc ∼c0

(2) gTPT1 − ghc ∼
{

VLJ(rmin) for r < rmin ≡ 21/6σ

VLJ(r) for rmin < r
ghc ∼(1 − |r|/dhc)�(dhc − |r|)

MGM gTPT1 ∼



−10(1 − |r|/σ) for |r| < σ

− VLJ(r)

kB T
for |r| > σ

0 —

YP
∫

d3r min(VLJ, 0)φσ 3/

(2kB T ) = −2.49φσ 3 ∼ − min(VLJ, 0) ghc ∼�(dhc − |r|)
YP∗ −3.69φσ 3 ∼ − min(VLJ, 0) ghc ∼�(dhc − |r|)
CMS − ∫

d3r cφσ 3/(2kB T )

= 2.51φσ 3 ∼c 0 —
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4.3. Related theoretical approaches

Our weighted density functional (35) is rather general and alternative numerical theories
correspond to specific choices of the free energy densities ghc and gatt and weighting functions
whc and watt. We will compare these other theoretical approaches to our theory and to MC
simulations [24]. The approximations inherent to these other theories are tabulated in table 1
and are described below [70]:

• MGM. A simpler theory with a single free energy density and a single weighting
function [24] will be used in some applications. This excess free energy corresponds
to gatt = gTPT1 and ghc = 0. Even if the weighting function is chosen carefully

w(r) ∼



−10(σ − |r|) for |r| < σ

− VLJ(r)

kB T
for |r| > σ

(52)

and, in fact, resembles the direct correlation function obtained from PRISM theory, the
predictions for density oscillations in the vicinity of walls will only be in qualitative
agreement with MC simulations. In particular, the density in the vicinity of the wall was
overestimated and, consequentially, the wetting transition occurred for smaller monomer–
wall attractions than observed in the MC simulations [24].

• YP. Patra and Yethiraj [43] (YP—to avoid confusion with Percus–Yevick) separated
the free energy functional into a repulsive and an attractive contribution with a simple
weighting function for the hard sphere contribution and a van der Waals approximation
for the attractive contribution. Unfortunately the latter gives a rather poor representation
of the equation of state. The phase diagram in the van der Waals approximation is also
shown in figure 4(b). The critical temperature is overestimated compared to the MC data or
the TPT1, while the liquid density is underestimated at lower temperatures. Only density
profiles in the vicinity of a wall were investigated,and the theory became progressively less
accurate as the temperature was lowered or the chain length increased. YP argued that this
was largely due to the inaccuracies in the van der Waals approximation to the equation of
state. In our implementation of this theory, we use a van der Waals approximation for the
attractions (YP) and a Heavyside step function for the repulsive weighting function [71].

• YP∗. At kB T/ε = 1.68 the van der Waals approximation underestimates the segregation
between liquid and vapour. A better equation of state is obtained by adjusting the attractive
free energy density in order to yield the correct density of the liquid at coexistence. The
results of the improved equation of state are denoted by YP∗. Unfortunately, the adjustment
has to be done at every temperature: in the vicinity of the CP (or at low densities) the
van der Waals approximation overestimates the magnitude of the second virial coefficient,
while it underestimates its magnitude at low temperatures (or high densities).

• CMS. The density functional work by McCoy et al [44, 72, 73] also employs a density
functional ansatz for the monomer–monomer interactions. It is based on the molecular
density functional theory of Chandler,McCoy and Singer (CMS) [74]. Expanding the free
energy densities g around a reference density φ0, i.e. g(φ) = g(φ0)+ g′(φ0)(φ −φ0)+ · · ·,
we can cast our equations in the form

Fex

kB T
= 1

2

∫
d3r d3r′ [φ(r) − φ0](2g′(ρ0)w(r − r′))[φ(r′) − φ0] + linear terms in φav.

(53)
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A comparison with the density functional work of McCoy et al [44, 72, 73] shows that
we obtain their theory when ghc = 0:

watt(r) = c(r)∫
d3r c(r)

(54)

and

gatt(φ) = − φ

2kB T

∫
d3r c(r), (55)

i.e. this scheme is identical to the previous scheme with a quadratic equation of state and
a single weighting function. As the second virial coefficient at kB T/ε = 1.68 is positive
there is no liquid–vapour coexistence and, hence, the equation of state is unsuitable for
investigating the wetting behaviour. Nevertheless, the packing of a dense liquid at a wall
can be described and the corresponding results are denoted by CMS4.

The free energy densities in these different theories are depicted in figure 5(a).

4.4. Comparison between SCF calculations and MC simulations

Figure 6(a) compares the different theoretical predictions for the monomer density profiles
of the liquid in contact with an attractive wall for kB T/ε = 1.68. Far away from the wall
the density is that of the pure liquid. At the surface the density is much lower than the bulk.
The value of the density profile increases monotonically from the value at the surface (∼0) to
the bulk value with a sharp increase at z/σ ∼ 1 and another increase at z/σ ∼ 2. In all the
theoretical calculations we fix the temperature except for the CMS scheme, where there is no
liquid–vapour coexistence and we therefore set φσ 3 = 0.643 far away from the surface.

Theoretical predictions for the density profiles at a surface are in qualitative agreement with
simulations as long as the bulk fluid thermodynamic properties are incorporated accurately.
Even though all computational schemes share a similar basis, it is apparent that the density
profiles are very sensitive to the free energy density and weighting functions. Of the various
theories shown in figure 6(a) some approximations are clearly inadequate. The CMS theory
has the correct bulk density (by construction) but the density at the surface is far too high and
the oscillations in the density profile are much stronger than seen in simulations. The shape
of the density profile predicted by the YP theory is similar to that seen in simulations, but
the value of the bulk density is too low. The performance of the MGM theory is superior to
the above two theories but the value of the density near the surface is too high compared to
the simulations. The approximations (1), (2) and YP∗ yield comparable results. These three
approaches are in quantitative agreement with the simulations and clearly more accurate than
the other approaches.

Panels (b) and (c) of figure 6 compare predictions of approximations (1), (2) and YP∗ to
MC simulations for a fluid between two walls at a separation D = 36σ and lateral extension
L = 18σ . In the canonical simulations we have fixed the average density to φavσ

3 = 0.577 846.
Various different strengths of the wall–fluid interaction, from εw = 1 to 4, are considered. For
εw = 4 the density of the liquid in the centre roughly corresponds to the liquid density at
coexistence. The density profile exhibits oscillations in the vicinity of the wall and reaches
the bulk value at around z = 1σ . As εw is decreased, the amplitude of the density oscillations
is reduced and a depletion zone gradually builds up in the vicinity of the wall. As the density
is reduced at the wall, the density increases in the centre and the chemical potential exceeds
4 If we would improve the quadratic equation of the state the results would be similar to the scheme (MGM), which
uses a weighting function that is very similar to the direct correlation function of the PRISM theory.
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the coexistence value µ > µcoex. At very small monomer–wall interactions there is a drying
transition (cf below), i.e. if we were to decrease εw at µ = µcoex the thickness of the depletion
layer would grow macroscopically. At µ > µcoex the thickness of the depletion layer remains
always finite, but it depends sensitively on the chemical potential in the vicinity of the drying
transition. A meaningful comparison is only possible if one fixes D and φav or the distance
µ − µcoex from the liquid–vapour coexistence.

Approximations (1) and (2) are in quantitative agreement with the simulation data. The
period of the density oscillations and their amplitude agrees quantitatively, but for larger
values of εw the density is underestimated slightly in the vicinity of the wall. The effect is
less pronounced for theory (1), which uses the PRISM direct correlation function, than for (2),
which employs a simple approximation for the weighting function.

The YP∗ approximation yields the correct density in the vicinity of the wall at large εw ,
but the amplitude and period of the density oscillations is slightly too large. Similar deviations
have been observed for hard chains at hard walls [68] and might be due to the simple form
of the weighting function whc. At smaller values of the monomer–wall interaction εw the
YP∗ calculation systematically underestimates the depletion at the wall. In part this is caused
by deviations in the equation of state. Even though the second virial coefficient is chosen
to result in the correct liquid density, the compressibility of the liquid is less than that in
approximations (1) and (2). If we increase the density in the middle of the film by the same
amount, the resulting shift in the chemical potential away from its coexistence value will be
larger in the YP∗ calculations which, in turn, reduces the thickness of the depletion zone.

Due to the extended shape of the molecules, they orient in the vicinity of the wall, chain
ends are enriched and chains’ centres of masses are depleted. The conformation characteristics
are presented in figure 7. Panel (a) shows the relative density of end segments and centre of
masses normalized by the monomer number density. This normalization compensates for the
oscillation in the vicinity of the wall and the ratios are rather smooth functions of the distance
z from the wall. There is a pronounced enrichment of chain ends at the wall and a concomitant
depletion about 2.2σ away from it. Likewise, the centre of masses are depleted at the wall and
their density is higher than the average where the chain ends are depleted. Panel (b) shows the
orientation of the bond vectors. In the vicinity of the wall bonds orient parallel to the surface.
The orientation exhibits small oscillations, i.e. for z ≈ 1.8σ the parallel components bx and
by are slightly smaller than the perpendicular one bz and the oscillations die out rapidly at
larger distances. The orientation of the largest molecular length scale, the end-to-end vector
R, is presented in panel (c). The z position of the chain is given by the distance of its centre
of mass from the wall. Orientations of the whole chain extend further away from the wall:
in the vicinity of the wall the chains are oriented parallel to the wall, at a distance z ≈ 3.4σ

chains orient slightly perpendicular to the wall. All theories compare very well with the
MC data for the conformational properties. The success of the theoretical description of the
chain conformations at the wall can be traced back to the enumeration scheme, which takes
due account of the chain conformation in the liquid on all length scales. The predictions
of approximation (1) are shown in figure 7 and demonstrate quantitative agreement between
theory and simulation.

Figure 8 depicts the properties of the liquid–vapour interface at temperature kB T/ε =
1.68: panel (a) shows monomer density profiles perpendicular to the interface and panel
(b) shows the temperature dependence of the interfacial tension γLV. Density profiles from
theories (1), (2) and YP∗ are all in qualitative agreement, similar to what was seen for a fluid at a
surface. The predictions for the interface tension, however, are remarkably different. Panel (b)
compares theoretical predictions for the temperature dependence of the interface tension γLV

to computer simulations. Note that, although approaches (1), (2) and MGM yield an identical
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Figure 7. (a) Relative density of chain ends and the chains’ centres of masses as a function of the
distance from the wall at kB T/ε = 1.68 and εw = 3. (b) Parallel and perpendicular components
of the bond vector for the same parameters. (c) Parallel and perpendicular components of the
end-to-end vector for the same parameters (from [70]).

bulk phase diagram, they show significant differences for the interface tension. The interface
tensions predicted by theories (1) and (2) differ by about 10%, while the theory with a single
weighting function (MGM) results in an interface tension which is about a factor 2 lower.
Compared to MC data, theories (1) and (2) consistently overestimate the interface tension,
which is to be expected from a theory which does not take due account of critical density
fluctuations. γLV vanishes at the critical temperature Tc which is overestimated by the theory
by 15%. At lower temperatures, however, the relative deviations between the MC data and the
predictions of (1) and (2) become smaller. The results of the MGM scheme, however, cross
the MC data: at high temperatures the interface tension is too large and at lower temperatures
it is too small.

The width of the interface is sensitive to the approximations invoked. Since the liquid is
far away from the triple point of the LJ monomer fluid, there are no density oscillations on the
liquid side of the profile. Using the slope of the profile at the centre, we define the (intrinsic)
width of the interface, wint , as

wint = φL
coex − φV

coex

2(dφ/dz)
(56)

where φV
coex and φL

coex are the vapour and liquid coexistence densities, respectively. Similar
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Figure 8. (a) Monomer number density profile across the liquid–vapour interface at kB T/ε = 1.68.
(b) Interface tension as a function of temperature. Circles denote the result of grand canonical MC
simulations [24], the broken curve with diamonds depicts the calculations with weighting functions
(1), the broken curve corresponds to weighting functions (2) and the thin broken curve shows the
result of a single weighting function (MGM) [24]. The results of the van der Waals approximation
(YP) and its adjustment YP∗ are shown as filled and open squares at temperature kB T/ε = 1.68,
respectively (from [70]).

Table 2. Results of calculations at reduced temperature kB T ε = 1.68.

φL
coexσ 3 φV

coexσ
3 γLVσ 2/kB T wint/σ �γσ 2/kB T

b
εwet
w

MC 0.611 0.0083 0.0953 cap. waves +0.0728 3.22
(1) 0.643 0.0015 0.150 1.20 +0.0723 3.65
(2) 0.643 0.0015 0.166 1.33 +0.0405 4.10
MGM 0.643 0.0015 0.082 0.74 +0.2149 1.98
YP 0.409 0.0026 0.066 1.35 +0.0736 2.90
YP∗ 0.611 0.0000 0.271 0.89 −0.0305 5.31
CMS 0.643a — — — −0.6805a —

a CMS: density set by hand, no liquid–vapour equilibrium �γ ≡ −γLW.
b at εw = 3.

to the density profiles at an attractive wall, the width of the liquid–vapour interface depends
sensitively on the free energy densities and weighting functions. The MGM calculation results
in the smallest width, while the YP-scheme yields the largest interfacial width. The data are
collected in table 2. We do not attempt to compare the data with MC simulations5, because
the profiles are broadened in the simulations and experiments, while the theory calculates a
hypothetical profile which does not account for fluctuations of the lateral interface position.
For the same reason, we also do not discuss profiles of chain conformations across the interface.
The previous study [24] showed that good agreement is found on the liquid side of the profile
once one accounts for capillary wave broadening. On the vapour side there are, however,
deviations because, in the MC simulations, the chains collapse in the bad solvent while there
is no conformational change going from the homogeneous liquid to the vapour in the theory.
A self-consistent treatment of the chain conformation in a spatially inhomogeneous system is
beyond the scope of the present computational scheme.

5 Profiles through the liquid–vapour interface are shown in figure 14 of [24]. They depend on the lateral system
size L . For L = 18σ we obtain w = 2.35σ .
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The values for the liquid–vapour interface tension γLV are also compiled in the table. The
YP calculation yields the lowest interface tension, because the system is much less segregated
than in the other calculations. The MGM calculations, which yield the smallest interfacial
width, however, give rise to the second smallest interface tension. Theories (1), (2) and YP∗
give similar results for the interfacial width, but the YP scheme yields a somewhat lower
interface tension. This shows that the width and the interface tension result from a subtle
interplay between repulsions and attractions, and details in the choice of the free energy
densities are important.

5. Wetting on a planar surface

5.1. Accurately locating a first-order wetting transition by computer simulations
5.1.1. Contact angle of droplets. Several methods have been employed to locate a
wetting transition. The most intuitive one is to observe the contact angle of a drop, as is
routinely done with great accuracy in experiments. Although in principle the simulation
is straightforward [30, 75], some care must be taken. In a grand canonical ensemble, for
example, a droplet is unstable and one will rather find the system forming a microscopically
thin, homogeneous liquid film below Twet, but no drop. In order to observe the droplet as a
stable state, it is required to constrain the number of particles to a fixed value. In this case,
indeed, a drop can be the thermodynamically stable configuration in a simulation cell of finite
size. The situation is similar to that found for spherical droplets [76, 77] at the liquid–vapour
coexistence in the bulk.

The chosen box geometry and total number of molecules turns out to be crucial for the
droplets to be stabilized. For instance, if the volume to surface ratio of the simulation cell is
extremely large, the simulation cell will resemble a grand canonical reservoir, and rather than
forming a droplet the particles will distribute homogeneously in the volume. One needs to
choose a total surface and number of particles such that spreading of a homogeneous liquid film
would result in a film thickness away from the stable region (see figure 1(a)). The behaviour of
the excess amount of matter will depend on whether the system is below or above the wetting
temperature, however. Below the wetting transition temperature, T < Twet a droplet will form
whenever the adsorption is above the stable value. The profile of the droplet in the vicinity
of the surface will be determined by the interface potential, as discussed previously; only the
asymptotic behaviour of a macroscopic drop depends on the minimum of the interface potential.
Even in the temperature interval Twet < T < Tpwc there are non-stable film thicknesses. They
lie between the thickness of the thin and thick adsorption layer of the prewetting coexistence.
In this case the vapour condenses onto the surface and increases the thickness of the liquid
layer until the volume reaches an undersaturation which corresponds to the chemical potential
of the prewetting coexistence �µpw < 0. On the surface, there will appear thick domains
lying on top of a uniform thinner film. The thickness of these two different domains (thin and
thick) will be given by the equilibrium values corresponding to the prewetting coexistence (cf
figure 1(d)), while their relative amount will be given by the lever rule. The thicker domains
may appear as ‘flat’ droplets, but are actually stable thick films above the wetting temperature.
The formation of such structures is not in contradiction with Young’s equation. On the contrary,
‘flat’ drops have a finite height and, hence, if one measured the contact angle � of a (laterally)
large ‘flat’ drop, one would obtain � = 0.

In figure 9 we present radially averaged drop profiles, which have been extracted from
simulations at kB T/ε = 1.68 and various attractive strengths of the surface. The box
considered had a size of 68σ × 68σ × 68σ and contained 1000 polymer molecules of length
N = 10.
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Figure 9. Radially averaged density profile of droplets for various strengths of the monomer–wall
attraction: εw = 2.6 (a) 3.2 (b) and 3.4 (c) (from [75]).

For the weakest attraction εw = 2.6 shown in panel (a) a well-defined droplet forms. From
the profile we read off an apparent contact angle �drop = 81(4)◦. This value is comparable
with the contact angle of a macroscopic drop as estimated by Young’s equation, which was
found to be � = 70◦ (see below, cf section 5.1.3). As we increase the value of the attractive
strength of the substrate εw , the apparent contact angle decreases gradually. For εw = 3.2 we
obtain �drop = 52(4)◦ and for εw = 3.4 we estimate �drop = 44(4)◦. Note that, qualitatively,
the shape of the small droplet is similar for all three values εw , and from an analysis of the
apparent contact angle one would estimate the wetting transition to occur significantly above
εw = 3.4. However, the accurate location of the wetting transition is εwet = 3.22, and the
contact angle of a macroscopic drop at εw = 3.2 is only � = 12◦. The droplet observed for
εw = 3.4 is therefore a ‘flat’ droplet whose height is dictated by the equilibrium film thickness
of the prewetting coexistence.

Unlike the experimental situation which relies on the observation of macroscopic drops,
the apparent contact angle of microscopic drops yields only a very inaccurate estimate of the
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macroscopic behaviour. In particularly, it tends to severely overestimate the contact angle in
the vicinity of the wetting transition.

5.1.2. Measurement of the liquid film thickness in the grand canonical ensemble. The
problems of estimating the wetting transition from the contact angle are two-fold:

(i) The measurement relies on the observation of a spatial inhomogeneity (drop), and only
for very large drops the apparent contact angle agrees with the macroscopic one.

(ii) The size and geometry of the simulation box matters, because the droplet and the
surrounding vapour exchange particles (e.g. the vapour can condense on the surface)
so that the system is not exactly at the liquid–vapour coexistence chemical potential.

Both issues can be avoided in the grand canonical ensemble.
One simple approach consists of performing grand canonical simulations at the liquid–

vapour coexistence chemical potential, and to monitor the thickness of the liquid film on the
surface. Below the wetting transition, we have either εw < εwet or T < Twet, depending on
whether the transition is approached by changing εw or T , respectively. In this situation, a thin
liquid film is stable at the wall. Upon approaching the wetting transition the layer thickness
diverges either continuously (at a second-order wetting transition), or discontinuously from
a microscopic value to a macroscopic value (in a first-order transition). Above the wetting
transition a macroscopically stable film is stable. Thus, starting below the wetting transition
with a finite liquid layer one can increase εw or T and estimate the location of the transition
by the divergence of the film thickness. At a first-order wetting transition there are, however,
two caveats:

(i) Even above the wetting transition a thin liquid layer might be metastable and, thus, one
rather estimates the location of the wetting spinodal instead of the wetting transition. At
a strong first-order wetting transition this might result in a significant overestimation of
the location of the wetting transition.

(ii) If one uses a simulation cell with two symmetric walls, as we do in our simulations, and
further sets the chemical potential to its coexistence value, the most stable configuration
consists of a simulation cell filled with liquid.

The monitored state made of two liquid films adsorbed on the wall is metastable and requires
decreasing the chemical potential below coexistence in order to become stabilized (capillary
condensation, cf also figure 2(c)). This metastability of the starting configuration severely
limits the length of the simulation runs. Indeed, using such a scheme, we estimate the
divergence of the wetting layer for kB T/ε = 1.68 to be at εw = 3.4. As expected, this
value is larger than the accurate location of the wetting transition εwet = 3.22.

Caveat (i) might be overcome by monitoring the probability distribution P(l) of the layer
thickness l. This gives direct information about the interface potential g(l)L2 = −kB T ln P(l),
where L2 denotes the surface area. At a first-order wetting transition the free energy barrier
between the thin and the (macroscopically) thick layer might be overcome by reweighting
techniques (cf section 3.3 and figure 2(c)).

The second restriction could be alleviated by choosing an attractive and a repulsive wall,
thus stabilizing a single liquid–vapour interface in the simulation cell. Ideally, one could
choose antisymmetric surface interactions such that the contact angle of a liquid drop on the
wall equals the contact angle of a bubble at the opposite wall, and no capillary condensation
would occur. While this is a promising route for symmetric mixtures [37, 78] it might be not
straightforward if the coexisting phases are not related by symmetry.
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Figure 10. (a) Ratio between the difference in the surface tension and the interface tension as
a function of the attraction between monomers and wall at kB T/ε = 1.68. The location of the
wetting transitions is shown at the bottom. Filled circles and the thick full curve represent the
MC results. The broken curve with open diamonds corresponds to the calculations with weighting
functions (1), the thick chain curve depicts the results with weighting function (2), the thin broken
curve is the result of using a single weighting function (MGM), the thin dotted curve shows the
scheme (YP) and the thin broken curve with open squares denotes the calculation with the adjusted
van der Waals approximation (YP∗) (from [70]). (b) Wetting and prewetting at kB T/ε = 1.68. The
horizontal broken curve marks the liquid–vapour coexistence, the full curve presents the results for
the prewetting curve. In the vicinity of coexistence a fit according to the Clapeyron equation (59)
is shown. The wetting transition and the prewetting CP are marked. The filled square marks
the simulation point used for patterned substrates in figure 13. The inset displays the probability
distribution of the layer thickness normalized to zero mean and unit variance for the system size
L/σ = 13.8, 27.6 and 54 at T = 1.68 and our estimate of the prewetting CP εw = 3.96. At this CP
the normalized distribution depends only on the universality class and the corresponding function
for the 2D Ising model is also shown (from [24]).

5.1.3. Young’s equation. By exploiting the ability of the grand canonical ensemble to
measure free energy differences, the problems with capillary condensation and metastability
may be avoided altogether. In one simulation with standard periodic boundary conditions,
one calculates the liquid–vapour interface tension, as described previously. In another set of
simulations, one considers a cell made of two parallel walls and periodic boundary conditions
in the remaining directions. By monitoring the density fluctuations, one obtains directly the
free energies of figure 2(c). The curves show two minima, corresponding to configurations
where either the vapour phase or the liquid phase are in contact with the walls. Therefore, the
free energy difference between these two states allows us to obtain directly �γ = γVW −γLW.
Each of these quantities may be measured in the simulations with a relative accuracy of a few
per cent. An additional advantage is that one obtains accurate estimates for rather modest
system sizes. Unlike the measurement of the effective interface potential g(l) one does not
regard the free energy of the liquid film bound to the wall and, hence, one needs not to choose
the system size large enough such that both the interactions of the liquid–vapour interfaces
with the walls and among themselves can be neglected. Having calculated γLV and γVW −γLW,
one can employ Young’s equation (equation (1)) in order to measure the contact angle and
the wetting temperature, as shown in figure 10(a). This method yields the accurate estimate
εwet = 3.22 for the wetting transition at temperature kB T/ε = 1.68.

The difference of the surface free energies approaches −γLV for small values of εw and
the vapour dries the wall. The free energy difference approaches the value −γLV with a very
small slope. This indicates that the transition is very weak first order and we cannot rule out
a second-order transition. The weakness of the transition explains the lack of metastability
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which is observed in the simulations. A very similar behaviour is found for monomeric LJ
fluids [38, 79] and a careful study of finite size effects is necessary [79] to accurately pinpoint
the location of the drying transition and its order.

5.1.4. Extrapolating the prewetting line towards coexistence. If the wetting transition is first
order, there will be a concomitant jump in the layer thickness above the wetting temperature
away from the coexistence curve in the εw–µ plane. At this prewetting line, a thin absorbed
layer coexists with a thick layer. In the vicinity of the prewetting line the probability distribution
of the layer thickness is bimodal and we can accurately locate the prewetting coexistence by
the equal weight rule (cf section 3.3). The prewetting line is presented in figure 10(b).

The prewetting line ends in the prewetting CP. Here, the difference in the layer thicknesses
vanishes. This transition is believed to belong to the 2D Ising universality class [80].
Since the correlation length of density fluctuations parallel to the surface diverges at this
point, effects of the finite lateral extension of the simulations cell have to be investigated
carefully. The normalized probability distribution of the layer thickness at our estimate for
the prewetting CP is presented in the inset of figure 10(b). Due to field mixing effects [81] the
distribution is asymmetric, but upon increasing the system size we decrease the asymmetry
of the distribution. Adjusting the attractive strength of the substrate to map the normalized
distribution onto the universal scaling function of the 2D Ising universality class we obtain the
estimate εpwc = 3.96(6) for the prewetting CP. This value is also marked in the wetting phase
diagram (figure 10(b)).

The approach of the prewetting to the coexistence curve has been studied by Hauge
and Schick [82]. The differential of the surface contribution to the thermodynamic potential
�(εw,µ) is given by (cf equation (24))

d�s

L2
= 〈Ewall〉

εw L2
dεw − �ex d�µ (57)

where �ex ≈ �φl/N denotes the polymer excess in the enrichment layer of thickness l at
the surface while 〈Ewall〉 denotes the average wall energy felt by the adsorbed film. At the
prewetting line a thin lthin and a thick layer lthick coexist and, hence, their change in �s along
the prewetting line is the same. This yields the following Clapeyron equation [82]:

d�µ

dεw

∣∣∣∣
prewet

= (〈Ewall〉thick − 〈Ewall〉thin)/εw L2

�ex
thick − �ex

thin

. (58)

Close to the coexistence curve lthick is very large. The difference in the surface excess increases
to leading order linear in the film thickness, �ex

thick − �ex
thin ≈ �φlthick/N , while the difference

in the wall energies approaches a constant value with growing lthick. To a rough approximation
this constant takes the value −�φ(9/ l8

thin − 3/ l2
thin):

d�µ

dεw

∣∣∣∣
prewet

≈ − N(9/ l8
thin − 3/ l2

thin)

lthick
∼ − 1

lthick
∼ �µ1/3. (59)

Above the wetting transition temperature the layer thickness increases like lthick ∼ |�µ|−1/3

(complete wetting). Integration of equation (59) yields �µ|prewet ∼ (εw − εwet
w )3/2 [82]. This

dependence can be used to extrapolate the prewetting line towards the coexistence curve and
estimate the location of the wetting transition. The approach of the prewetting line in the MC
simulations and the SCF calculations is presented in figure 10(b). The extrapolation agrees
with the estimate obtained from the Young equation.
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5.2. Comparison between MC simulations and SCF calculations

To investigate the wetting behaviour of the polymer liquid in the SCF theory we calculate the
surface free energy as a difference between the grand canonical potential of the system in the
presence of a wall and that of a homogeneous system:

γ

kB T
≡ � − �hom

kB T A
= (F − µφavV + pV )D

V kB T
(60)

where �hom is the grand canonical free energy of a homogeneous system and A denotes the
area of the wall. The contact angle � of a macroscopic polymer drop on a wall is controlled
by the difference between surface tensions, �γ = γW V − γW L , on the one hand, and by the
liquid–vapour interface tension, γLV, according to cos � = �γ

γLV
. The values of the difference

of the surface tension �γ at kB T/ε = 1.68 and εw = 3 are compiled in table 2. Again, the
different approximation schemes give vastly different values. The best agreement with the MC
simulations is obtained by theory (1), while the worst deviations are observed for the CMS
scheme.

The dependence of the contact angle on the monomer–wall attraction εw is presented in
figure 10(a). Theories (1) and (2) yield good agreement with the MC simulations. Using the
direct correlation function from PRISM theory in scheme (1) appears to improve the agreement
slightly when compared to scheme (2),which uses a phenomenological ansatz for the weighting
functions. The YP theory also gives reasonable values for the contact angle. The agreement
is, however, fortuitous, because it underestimates both the interfacial tension and the surface
tension substantially and these errors tend to cancel. The MGM and YP∗ theories overestimate
and underestimate the contact angle, respectively.

Having assessed the accuracy of the SCF approach by comparing it quantitatively to
MC simulations, we demonstrate its usefulness by discussing in the following sections some
applications of the SCF calculations to slightly more complicated but experimentally relevant
situations.

6. Interplay between short-range and long-range interactions

Dewetting experiments can probe the subtle features of the interface potential. The minimum
of the interface potential is related to the contact angle � via gmin = γ (cos � − 1), and the
kinetics of the dewetting process tells a great deal about the curvature of the interface potential:
if the curvature is negative, the spinodal dewetting occurs which is characterized by a dominant
lateral length scale. If the curvature is positive, the film is locally stable and dewetting (if it
occurs) proceeds via nucleation of holes.

A standard experimental system is polystyrene (PS) on a silicon (Si) wafer which is coated
by a thin oxide layer of thickness dox. Such a situation is sketched in figure 11(a). Experiments
by Müller-Buschbaum et al [83] reveal a rather intriguing dewetting behaviour as illustrated
in figure 11(a). At high temperature, T = 165 ◦C, the polymer dewets and forms drops. These
macroscopic drops sit on a mesoscopic film of thickness l� = 22(6) Å. Upon cooling below
the glass transition temperature Tg ≈ 100 ◦C, this mesoscopic film between the drops dewets
and forms nano-droplets of diameter 68(8) nm. As the polymer film becomes glassy, these
nano-droplets do not coalesce into macroscopic drops. One observes a dewetting morphology
with two distinct drop sizes: macroscopic drops and nano-droplets.

Assuming that the dewetting morphology observed in the experiments is caused by static
wetting properties, we can rationalize this two-stage dewetting process by an interface potential
that exhibits two minima—one corresponds to the mesoscopic film which is stable at high
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Figure 11. (a) Sketch of the polymer film on top of a bilayer substrate, consisting of Si and a thin
oxide layer. l denotes the thickness of the polymer film and dox the thickness of the oxide layer.
At high temperatures macroscopic drops sit on top of a mesoscopic film. At low temperatures,
the mesoscopic film becomes unstable and breaks up into smaller drops. (The relative size of
the nano-droplets and the macroscopic drops is not to scale.) (b) Schematic illustration of nano-
dewetting. Weak but long-ranged van der Waals interactions determine the interface potential at
long distances. They repel the interface at large distances l > lvdW and attract the interface at
intermediate distances. Strong but short-ranged contributions to the interface potential arise from
the distortion of the density profile in the vicinity of the substrate. These forces tend to stabilize
a microscopically thin film, and they repel the interface at intermediate and large distances. The
interplay between van der Waals and short ranged interaction might result in two competing minima.
(The relative magnitude of the short- and long-ranged forces is not to scale). (c) Effective interface
potential g(l) for various oxide layer thicknesses. The contact interaction Vc has been chosen such
that the minima at l ≈ 0 and l → ∞ have almost equal free energy: Vc = 3.26ε for dox = 9 Å,
Vc = 1.4ε for dox = 24 Å and Vc = 0.89ε for dox = 191 Å. The chain curve [SHJ] corresponds
to the results of [85]. The inset presents an enlarged view of the minimum at the mesoscopic film
thickness (from [86]).

temperatures, and one corresponds to a microscopic, vanishingly small thickness l ≈ 0, which
is stable at lower temperatures.

As detailed in the introduction, both short-range and long-range interactions contribute to
the interface potential. The length scale of the short-range interaction in equation (4) is of the
order of the width ξ of the interface between the dense polymer melt and its vapour, which is
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typically only of the order of a few ångström. Balancing short- and long-range contributions,
one finds that the short-range contribution dominates for

l � lcross = ξ ln

(
γ

glr(lcross)

)
. (61)

Hence short-range forces are important for extremely thin polymer films or when the Hamaker
constant, which controls the strength of the long-range interaction is small. The latter condition
is fulfilled, for instance, when the contact angle of the polymer liquid is very small.

The influence of the long-range interactions can be reduced effectively by coating the
substrate with a thin oxide layer (Ox). In this case equation (7) has to be replaced by [83, 84]

glr(l) = 1

12π

(
− APSPS − APSOx

l2
+

APSSi − APSOx

(l + dox)2

)
(62)

where APSPS, APSSi and APSOx denote the Hamaker constants of the polymer, the polymer and
the substrate, and the polymer and the coating layer. Specifically for PS on an oxide-covered
Si wafer the Hamaker constant of the oxide coating is smaller than the Hamaker constants of
the polymer and the substrate and both terms in the equation above tend to cancel. In this case
the long-range part of the interface potential alone exhibits a maximum at a film thicknesses
lvdW ∼ dox of a few nanometres. In figure 11(b) we illustrate how the interplay between
short- and long-range contribution results in two local minima of the interface potential. The
minimum at microscopic film thickness is only due to short-range forces: the corresponding
barrier signals the free energy costs of forming a (hypothetical) homogeneous film which is
thinner than ξ . The second minimum at a mesoscopic film thickness l� < lvdW arises from the
interplay of both contributions: The short-range part repels the liquid–vapour interface from
the substrate, but it decays rapidly as the film thickness grows. The long-range contribution
attracts the liquid–vapour interface for thickness l < lvdW.

This qualitative explanation relies on two assumptions:

(i) The phenomenological form of the short-range contribution does neither specify the length
scale ξ of the short-range interaction nor its strength. Additional contributions due to the
entropy loss of the polymers due to the confinement in a thin film are neglected.

(ii) The long-range contributions have to be cut-off at small film thickness l. If we used the
expression for the long-range contribution (62) at small distances l → 0 the long-range
forces would diverge.

We recall, however, that one obtains the form of the long-range contributions by integrating
the interactions between the liquid and the substrate using a sharp-kink approximation for
both the liquid–substrate and the liquid–vapour interface (cf equation (6)). For thin films this
assumption of a trivial density profile breaks down: in fact, the very distortion of the density
profile gives rise to the short-range contribution to the interface potential.

In the following we use SCF calculations, which do not invoke these assumptions, to
corroborate the explanation of the experimental finding. Starting from the interactions between
the liquid and the substrate we calculate the detailed form of the density profile and the free
energy of the liquid film.

To compare the SCF calculations to the experiments we choose the parameters of our
computational model to be comparable to the experiments on PS. The LJ chains of N beads do
neither capture details of 8.7k PS on an atomistic scale, nor do we adjust the equation of state
of our model to experimental data on the pV T behaviour of PS. Therefore, we cannot expect
agreement between our computational model and experiments on all quantities simultaneously
and we identify the model parameters to match quantities pertinent to the wetting behaviour.
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We use a chain length N = 84, which corresponds to the number of repeat units in the
experiments. As the number of single-chain conformations increases exponentially with chain
length, the partial enumeration scheme would require a very large number of single-chain
conformations to capture the orientation and deformation of the chains at the substrate and
the liquid–vapour interface. Therefore, we rather use the Gaussian chain model, for which the
single-chain partition function can be calculated numerically exactly. The statistical segment
length b = 1.3σ is chosen so as to reproduce the chain extension of the bead-spring model.
The length scale in the calculations is set by the radius of gyration Rg = b

√
N/6. In the

calculations Rg ≈ 4.8σ while the experimental value is Rg = 25.4 Å. Hence, we identify
σ = √

6Rg/[b/σ ]
√

N = 5.22 Å. Not including any architectural details on the segmental
length scale, we use a local density functional (i.e.whc(r) = watt(r) = δ(r)) in conjunction with
the TPT1 equation of state (employing the MSA closure for the monomer reference fluid). The
density of PS at T = 413 K is ρ = 1 g cm−3. This corresponds to 6.9×10−5 molecules Å−3 or
a segment density of φl = 6.9×10−5(

√
6Rg/Å)3/b3

√
N = 0.83σ−3 in LJ units. We adjust the

temperature kB T/ε such that the density of the liquid (in coexistence with the vapour) matches
the experimental density. This yields kB T/ε ≈ 0.96 in LJ units (or ε = 0.57 × 10−20 J). The
critical temperature Tc ≈ 2.96ε/kB T for chain length N = 84 corresponds to 1300 K, which
is well beyond the thermal stability limit. For these values of parameters the SCF calculations
yield for the interface tension the value γ = 0.36ε/σ 2. Using the estimates for σ and ε we find
this value to be about a factor 4 smaller than the experimental data γ = 0.031 × 10−20 J Å−2

at T = 140 ◦C. If we used a non-local density functional with different weighting functions
for attractive and repulsive interactions, the SCF calculation would yield a larger interface
tension (cf section 4.4 and figure 7(b)). We emphasise, however, that no experimental input
about the pV T behaviour has been used to parametrize the free energy density and no specific
information about the atomistic structure of PS enters the calculation. Consequentially, we
consider the SCF result for the interface tension γLV rather as an estimate of a typical interface
tension of a polymer liquid in coexistence with its vapour than a prediction for the specific
system at hand.

The long-range part of the effective interface potential has been extracted from a careful
analysis of dewetting experiments. Although the experiments of Seemann et al [85] employ
shorter chains (2k PS), we do not expect the van der Waals interactions to exhibit a strong
dependence on chain length. The experimental data can be parametrized by

gexp(l)

γLV
= A

(
− 1

l2
+

r

(l + dox)2
+

c(dox)

4l8

)
(63)

with parameters A = (APSPS − APSOX)/12π, γLV = 1.88 Å2, r = (APSSI − APSOX)/(APSPS −
APSOX) = 6.9 and c(dox) = 3.5 × 105 Å6 for an oxide layer of dox = 24 Å [85]. The first
two terms represent the long-range interaction according to equation (62). The value of the
coefficients are compatible with estimates obtained from the Hamaker constants of the pure
materials [83].

In order to describe the experimental finding, the description of the interface potential
has been augmented by an additional (long-range) term, which decays like 1/ l8. This term
dominates gexp at small distances and its strength has been adjusted to yield the measured
contact angle of the polymer drops for each thickness of the coating layer. The form of the
potential has a single minimum at short distances.

Using the sharp-kink approximation, we can calculate the monomer–substrate interactions
which give rise to the interface potential above:

Vwall(z)

γLV
= εwall

(
1

l3
− r

(l + dox)3
− c

l9

)
(64)
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with εwall = 2A/φl . For the inaccuracy of the SCF calculations in predicting the interface
tension not to upset the comparison with the experiment, we choose the strength of the
monomer–wall potential Vwall such that the dimensionless ratio of the van der Waals
contribution to the effective interface potential and the interface tension takes the experimental
value. Using εwall = 2A/φl with A = 1.882 Å2 = 0.069σ 2, we find εwall = 0.167σ 5.
The additional term l−9 in the interface potential could be (formally) conceived as a strong
1/r12 attraction between the polymer segments and the constituents of the substrate, but it
should be rather considered as an effective description of the attraction between the polymer
and the substrate at short distances.

The monomer–wall potential (64) is appropriate for intermediate and large distances of l,
which is the actual range of film thickness the dewetting experiments are able to probe. If
we used equation (64) at all values of l, we would seriously underestimate the contact angle
of the polymer drops on the substrate. Unfortunately, details of the monomer–wall potential
at short distances are not known. We expect Vwall to be repulsive in the ultimate vicinity of
the wall, because of the short-ranged repulsion (hard core interaction) between the polymer
segments and constituents of the oxide layer. At short distances there is an attraction between
the polymer segments and the wall. This contribution to the free energy is partially due to van
der Waals interactions between polymer and oxide and partially due to specific interactions
between PS and the SiOx layer on the atomic scale. This short-ranged behaviour of Vwall cannot
be modelled faithfully in the framework of our coarse-grained model: an accurate modelling
of the liquid and the surface on the atomistic scale would be required.

As a minimal model we use the monomer–wall potential (64) up to distances where
Vwall < −Vc. For smaller distances, we set Vwall = −Vc and ∞ for z < 0 (i.e. inside the
oxide layer). The value of the contact potential Vc determines the contact angle of droplets on
the bare substrate and the contact angle of drops on the mesoscopic film is rather independent
from Vc. The values Vc are comparable to the attractive LJ interactions, but much smaller than
the energy of a chemical bond (εbond ∼ O(40ε)).

The dependence of the interface potential g(l) on the thickness of the oxide layer is
shown in figure 11(c). Indeed, the interface potential exhibits two minima. A thin oxide
layer (d = 9 Å) cannot stabilize a mesoscopic film. There is a local minimum at mesoscopic
thicknesses, but it is either unstable with respect to the minimum at l ≈ 0 or l → ∞.
The absence of a mesoscopic layer for a thin oxide layer is in accordance with previous
observations [86]. Upon increasing the oxide layer, we stabilize a mesoscopic film and its
layer thickness l∗ grows with the oxide layer dox. This corresponds to the situation at high
temperature. The thicker the oxide layer the smaller is the influence of the short-ranged
contribution to the interface potential at l∗, and the more faithful follows the full interface
potential of the long-ranged contribution gexp. In fact, for a thick oxide layer (dox = 191 Å),
our calculations are by construction in good agreement with the mesoscopic film thickness
l∗ = 13 ± 2 Å and the contact angle of 7.5◦ measured by Seemann et al [85].

7. Wetting on a polymer brush

Grafting or adsorbing chains to the substrate is another route to tune the wettability [87–90].
The grafted polymers may ‘tie down’ [88] the liquid film and prevent rupture. Their effect
is two-fold: grafted chains might inhibit dewetting kinetically or they modify the interface
potential as to form a thermodynamically stable wetting layer. We shall discuss only the latter
effect and constrain ourselves to the most symmetric case of an oligomeric liquid on top of a
chemically identical brush.
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According to the Young equation [3] the polymer liquid will wet the brush if

γB L − γBV + γLV � 0. (65)

Typically, the tension at the liquid–vapour γLV and brush–vapour γBV interface are large but
of comparable magnitude, while the free energy cost γB L of the interface between brush and
the free chain liquid is small. Hence, wettability is controlled by a subtle balance of all three
contributions.

Much effort has be focused on the calculation of the surface tension γB L between the
brush and the liquid, which stems from the interplay between the translational entropy the
liquid gains by penetrating into the brush and the configurational entropy loss which follows
when the chains of the brush are swollen by the free chains. Scaling considerations [91, 92] and
SCF calculations [93–97] of incompressible melts with purely repulsive interactions have been
applied with success to the manner in which a concentrated solution of free chains penetrate
into the brush. At low grafting densities the penetration is large and γB L is negative; but there
is little penetration at large grafting densities and γB L is positive. This dependence on the
grafting density partially rationalizes the experimental observation that a polymer liquid does
not wet a brush of identical monomers at high grafting densities [89, 98, 99]—a phenomena
termed autophobicity.

The properties of the liquid–vapour or brush–vapour interface, however, cannot be
described by models which invoke an incompressibility constraint and the effect of long-
range van der Waals interactions between the liquid and the substrate is often neglected. In
our SCF calculations we capture compressibility effects and can calculate all three interface
tensions within a unified framework. In the following we illustrate the qualitative behaviour
at temperature kB T/ε = 1.68 and chain length N = 10 using the MGM scheme (cf section).
The average area per grafted chain is denoted as �. The first monomer of the grafted chains is
placed a distance �z = 1.2σ away from the wall, while free chains sample all spatial positions.
In the following we discuss the wetting properties under conditions where the liquid coexists
with its vapour in the bulk.

Three regimes of the reduced grafting density R2
e /� can be distinguished:

• Low grafting density. In figure 12(a) we present the interface potential as a function
of the average area � per grafted chain in the absence of long-range interactions A = 0
(i.e. a hard repulsive wall). For low grafting densities the minimum of g(l) occurs close
to the wall. In the absence of free chains the interface between the brush and the vapour
resembles the liquid–vapour interface. There is a stable minimum of the interface potential
close to the substrate. The film thickness which corresponds to this minimum is rather
independent of the amount of grafted chains, but its depth decreases as we increase the
grafting density. Free chains penetrate into the collapsed brush (cf figure 12(b)) but
the attraction between the brush chains and the liquid is not strong enough to make the
liquid wet the substrate. An attractive long-range interaction A > 0 is necessary to bring
about a first-order wetting transition at Awet. As we increase the grafting density R2

e /�,
the wetting transition occurs at smaller values of Awet. The dependence of the wetting
transition on the grafting density is presented in figure 12(c).

• Intermediate grafting density. Upon increasing the grafting density further, the brush
creates enough attraction to make the fluid wet the substrate at Awet = 0. The line of
first-order wetting transitions terminates in a critical end point (CEP). For larger grafting
densities, wetting transitions are of second order, i.e. the thickness of the wetting layer
increases continuously as the limit A → Awet = 0+ is approached. For negative values
A < 0 the liquid cannot wet the substrate, the contribution of the brush to the effective
interface potential is short-ranged and cannot outweigh the long-range interactions
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Figure 12. (a) Interface potential g(l) for various grafting densities R2
e /� as indicated in the

key. There are no long-ranged interactions (A = 0) between the substrate and the monomers.
((b), (d)) Density profiles at intermediate R2

e /� = 0.69 (b) and high R2
e /� = 3.35 (d) grafting

densities. Film thicknesses are indicated in the key, the lowest value corresponding to a dry brush.
The first monomers of the grafted chains are excluded from the profiles, their position is indicated
by the vertical arrow. Thick curves present the total density profile φ = φg + φ f . For the two
larger thicknesses, lines with symbols represent the profiles of grafted chains and shaded areas
correspond to free chains. (c) Wetting phase diagram in terms of the effective Hamaker constant
Awet and the grafting density R2

e /�. Broken curves denote first-order wetting transitions, the
full curve denotes transitions between a microscopic thin and a mesoscopic thick layer, and the
horizontal line at Awet = 0 marks second-order wetting transitions. The line of transitions between
a thin and thick layer terminates in a CEP at low grafting densities and in a CP at high grafting
densities. Second-order and first-order wetting transitions at high grafting densities are separated
by a tricritical point (TCP) (from [40]).

for large (macroscopic) film thicknesses. The behaviour resembles the experimental
observations (‘frustrated wetting’) of alkanes at the water–air interface [100–103]. The
short-range interactions favour a thick liquid layer, but the long-range interactions A < 0
inhibit the growth of a macroscopic liquid layer. The line of first-order wetting transitions
at low grafting densities Awet > 0 continues into the regime of second-order wetting in
terms of a transition between a microscopically thin and a mesoscopically thick layer at
Att < 0. This behaviour is different from the prewetting behaviour, because it occurs at
liquid–vapour coexistence �µ = 0 and not at undersaturation �µ < 0. For A < Att a
drop sits on top of a microscopically thin layer, while for Att < A < 0, the drop sits on top
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Figure 13. Probability distribution of the total thickness as a function of the fraction of the polymer
brush x = L B/(L A + L B) (cf sketch in the inset) at temperature kB T ε = 1.68, εw = 3.5 and
undersaturation µ − µcoex = −0.15ε (cf figure 10). Around x ≈ 0.27 there is a morphological
transition. The broken curves mark the adsorption on the stripe, on the brush and the linear
superposition. The panels on the right present snapshots of configurations at x = 0.266. The
simulation box and three periodic images are shown. The upper and lower panels correspond to
R2

e /� = 1.38 and 5.67, respectively.

of a mesoscopically thick layer. Such a jump in the film thickness at coexistence which
precedes the second-order wetting transition is also in agreement with the experiments
of alkanes at the water–air interface [100, 101, 103]. The line of thin–thick transitions
Att terminates in a CP at which the difference between the microscopically thin and the
mesoscopically thick layer vanishes.

• High grafting density. Upon increasing the grafting density even further a stable
minimum of the interface potential in the absence of long-range interactions A = 0
develops. The larger the grafting density the deeper the minimum and the further away
from the substrate it occurs. The density profiles at high grafting density are shown in
figure 12(d). Adding a small amount of free chains we allow the collapsed chains of the
brush to relax: in the absence of free chains the brush–vapour interface is similar to the
very narrow liquid–vapour interface and a small amount of free chains allows the brush
profile to adopt a broader profile which resembles the profile of a brush in contact with the
liquid (melt). Unlike the situation at small and intermediate grafting densities, however,
the free chains are expelled from the brush and confined into a narrow layer on top of the
brush. Adding a small amount of free chains reduces the free energy initially. Increasing
the amount of free chains beyond that necessary to relax the conformation of the brush
chains, however, increases the free energy as the free chains are confined. This gives rise
to the minimum in the interface potential. This minimum shifts to larger thickness as the
grafting density is increased. Thus, in the absence of long-range attraction the liquid does
not wet the dense brush of identical chains. This autophobicity has been observed on
polymer brushes and crosslinked polymer networks. Upon making the substrate attract
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the liquid A > 0 we can overcome the autophobicity and make the liquid wet the brush.
The wetting transition on the dense brush is of first order and Awet > 0 increases with
grafting density.

Experiments [104] at intermediate grafting densities yield evidence for the stability of a thin
and a mesoscopically thick film (at phase coexistence between the liquid and the vapour).
More recently, experiments [105, 106] on the wetting of PS on a PS brush indeed observe two
wetting transitions: at small and very large grafting density the polymer film dewets the brush,
while at moderate grafting density the PS film remains stable.

8. Patterned surfaces

Another way to modify the wetting and adsorption properties is to exploit the influence of
geometrical surface patterns. Bauer and Dietrich have investigated the wetting behaviour of a
planar substrate containing a stripe [107–109]. This stripe consists of a chemically different
material than the substrate. A particularly intriguing adsorption behaviour is found in the
vicinity of the prewetting coexistence of the stripe material: at �µ < �µpw < 0 the infinitely
extended stripe is covered by a thin liquid layer, while for �µpw < �µ < 0 a thick (but finite)
layer builds up. Similar to capillary condensation, the transition between the thin and thick
adsorption layers on the stripe is rounded-off, because the stripe is quasi-one-dimensional, and
shifted away from the prewetting line of the infinite stripe. The magnitude of the shift depends
both on the widths of the stripe and the adsorption properties of the substrate bordering the
stripe [109]. Making the substrate more attractive to the fluid, one induces a change from a
thin liquid layer adsorbed on the stripe to a thick film, and vice versa. This phenomena is
termed morphological transition, because it implies a transition between two different density
profiles (a snapshot showing the two different states is shown in figure 13).

In order to observe such a morphological transition in our MC simulations, we have to
adjust the wetting properties of the stripe and the substrate carefully. In our simulations we use
periodic boundary conditions in the two lateral directions such that we rather look at alternating
stripes A and B . We work at temperature kB T/ε = 1.68, undersaturation �µ = −0.15ε and
use long-range attractions between the fluid and the wall according to equation (17) with
εw = 3.5. Under these parameters a thin liquid layer adsorbs on the stripe A (cf figure 11),
and the stripe A is close to its prewetting transition. As second stripe B (or substrate), we
use the same long-range attraction between the fluid and the wall, but we increase the fluid
adsorption by grafting chains to the surface with R2

e /� = 0.837. The SCF calculations in
figure 12 suggest that the adsorbed amount on the brush B can be tuned easily, because the
brush B exhibits a second-order or very weakly first-order wetting transition.

In the following we vary the width of the (first) stripe L A and fix the width of the brush-
covered second stripe to L B = 8σ . In the inset of figure 13 we present the adsorbed amount per
area as a function of the fraction x = L B/(L A + L B) of the brush. For x < 0.2 the adsorption
increases linearly with the brush fraction. Around x ≈ 0.27 the average adsorption develops
an s-shaped dependence on the brush fraction x and for x > 0.35 the adsorbed amount on the
patterned substrate almost reaches the value of the brush substrate. The average adsorption on
the substrate is more than twice as much as the linear superposition would suggest. In the side
panels we show two snapshots at the same brush fraction x = 0.26: in the upper snapshot,
there is hardly any adsorption on the stripe A and the liquid condenses onto the brush-covered
stripes B . The total adsorption is what one would expect by adding the adsorption on the stripe
A and the brush B weighted by their areal fraction. In the lower snapshot, the liquid forms a
uniform thick layer on the substrate and the total adsorption is comparable to the adsorption
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on an infinitely extended brush B . The snapshots illustrate the two states separated by the
morphological transition. As the system is two-dimensional (i.e. neighbouring stripes of the
same type are coupled) the transition can be truly of first order.

During the simulation the system of finite size switches from one state to another.
Therefore we do not observe a sudden increase of the adsorption at the morphological transition.
It is instructive to look at the probability distribution of the adsorption. For small and large
values of x , the distribution P(�) has a single peak centred around the average value of the
adsorption. Close to the transition, however, the distribution is bimodal, each peak corresponds
to the two states at the morphological transition. Around x ≈ 0.27 both peaks have equal weight
and this criterion yields an estimate for the location of the transition. In the inset, we have also
indicated the average adsorption which corresponds to the individual peaks: the lower value
follows the weighted average of the stripe A and the brush B , while the higher value is close
to the adsorption of the brush B . This gives an estimate for the adsorption one would observe
in a larger system.

In order to study the ability of the stripe to modify the wetting behaviour of the substrate,
it is interesting to compare the above results with similar adsorption simulation where the
chains are grafted uniformly on the substrate, rather than forming stripes. For example, the
stripe with areal fraction x = 0.267 may be uniformly distributed to form a uniform brush
with grafting density 1/� = x/�stripe. In this case we find that the stable state of the system
consists of a thick layer of polymers, with total adsorption of R2

g/� = 4.9 polymers. It is
interesting to note that a thin film is not stabilized, and that the adsorption of the stripe with
equal amounts of grafted polymers is R2

g/� = 5.1. This suggests that grafting polymers so
as to form stripes may allow us to obtain larger absorptions than would be obtained if the
polymers were uniformly distributed on the surface.

9. Summary and outlook

We have discussed MC methods and SCF calculations for studying the surface and
interface properties of polymeric liquids. Both the structure (e.g. density profiles and chain
conformations) as well as thermodynamic properties (e.g. surface and interface tensions) have
been calculated accurately. Several versions of the SCF calculations have been quantitatively
compared to the simulation results of a standard, coarse-grained polymer model. In the
numerical SCF calculations the multichain problem is approximated by a single chain in
an effective field. The properties of the single chain are calculated via a partial enumeration
scheme, which takes due account of the chain conformations on all length scales. The effective
interactions are described by a weighted density functional. For the theory to be quantitatively
accurate, it is essential to decompose the density functional into a repulsive and an attractive
part, with different approximations for the two parts.

Using both computational techniques we have investigated the wetting properties of our
coarse-grained model at surfaces, which attract the fluid via long-range forces. Various methods
of how to locate the wetting transition in the simulations have been discussed. The first-order
wetting transition has been accurately located via the Young equation, and the concomitant
prewetting line has been obtained.

We have explored how to modify the wetting properties:

(i) The influence of a thin coating layer, which gives rise to an interplay between long-range
and short-range forces, has been considered. This results in an effective interface potential
with two minima, and leads in experiments to two distinct dewetting morphologies.

(ii) Grafting chains to the surface results in a complex wetting behaviour, including first- and
second-order wetting transitions.
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(iii) Chemically patterned substrates exhibit unusual adsorption properties which arise from a
morphological transition.

Theses examples illustrate the versatility of the computational methods which allow a
qualitative description of experimentally relevant systems. There are various other ways how
to control the wettability of surfaces. Let us mention two examples:

(i) Geometrical patterns, for instance wedges, can dramatically alter the wetting
properties [110–112].

(ii) The wetting properties might be tuned by surface active substances, like solvents or
surfactants, which exhibit a preferential adsorption to the substrate or the vapour interface
or surfactant.

Polymers offer an even larger range of possibilities: since the surface properties depend
on the chemical composition in the very top of the substrate one can construct polymeric
substrates with tunable surface properties using binary polymer brushes [113] or polymers
which comprise segments with different surface properties [90].

Our calculations have been focused on the static wetting properties of coarse-grained
models.

(i) The kinetics of dewetting has attracted much interest. The SCF calculations can be
extended to describe the dynamics. To date, however, only very simple SCF schemes,
which use the Gaussian chain and simple, local interaction functionals have been used
for dynamical calculations. A recent MC study investigated the spreading of microscopic
droplets [114]. In the simulations only microscopically small droplets can be observed.
On the one hand, much care has to be exerted to extrapolate the results to macroscopic
drops (cf section 5.1.1). On the other hand, those microscopic droplets might exhibit new
interesting behaviour which might be practically relevant for nanofluidic applications.

(ii) In principle it is straightforward to include more details of the chemical structure in our
calculations. In our partial enumeration scheme [115] we could use, for instance, chain
conformations which have been obtained from atomistic simulations or the rotational
isomeric state model [116].

A major challenge in this context is an accurate description of the interaction potentials.
Information about the intermolecular potentials can be inferred from equation of state data and
the long-range van der Waals interaction between the surface and the liquid can be parametrized
by Hamaker constants. Much less is known about the interaction between the fluid and the
substrate at short distance. As illustrated by the calculation on the wetting behaviour on an
oxide-covered surface, changes of the order of kB T per segment might lead to pronounced
modification in the wetting behaviour.
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